DOI: http://dx.doi.org/10.18203/2394-6040.ijcmph20214303

Biomimetic mechanical properties and its role in restorative dentistry

Thuraya Abdulrahim Basudan, Wafa Mansour Alqahtani, Fatimah Abdullah Almughalliq, Atyaf Saeed Alshahrani, Atheer Mubarak Aldawsari, Atheer Ali Algouzi, Anas Riyadh Hamdoon, Abdulaziz Saleh Alkarim, Amal Abdulrahman Al Shalwan, Ghadah Hamid Alhuzili, Nusaybah Hamzah Maghrabi

Abstract


The main aim of introducing biomimetic materials is to achieve successful remineralization using biocompatible and optimally functioning materials that can be used to manage diseased and defective tissues in a minimally invasive process. Recently, evidence shows that many biomimetics was introduced with excellent advantages and favorable outcomes in the different fields of dentistry. A wide acceptance of biomimetics was reported in the field of dentistry as the modalities were efficaciously applied in the different endodontic and restorative procedures. In the present literature review, we have discussed the biomimetic mechanical characteristics of the different restoration materials that are currently used in the field of restorative dentistry. The current evidence supports the use and applications for biomimetics in the field of restorative dentistry based on the extensively reported evidence regarding the mechanical and functional characteristics of these modalities which mimic the functions of normal teeth. Accordingly, these modalities can be used to solve the underlying clinical challenges that are routinely faced in the settings of restoration. Furthermore, different materials were introduced and evaluated for their efficacies, and the clinical decision of these materials is based on many factors and should be taken based on dentist-and-patient interaction.


Keywords


Restoration, Biomemetics, Biocompatability, Dentistry, Dental resin composites, Glass-ionomer cermics

Full Text:

PDF

References


Donnermeyer D, Bürklein S, Dammaschke T, Schäfer E. Endodontic sealers based on calcium silicates: a systematic review. Odontology. 2019;107(4):421-36.

Sanz JL, Lozano FJ, Llena C, Sauro S, Forner L. Bioactivity of Bioceramic Materials Used in the Dentin-Pulp Complex Therapy: A Systematic Review. Materials (Basel). 2019;12(7):1015.

Bazos P, Magne P. Bio-emulation: biomimetically emulating nature utilizing a histo-anatomic approach; structural analysis. Eur J Esthet Dent. 2011;6(1):8-19.

Tirlet G, Crescenzo H, Crescenzo D, Bazos P. Ceramic adhesive restorations and biomimetic dentistry: tissue preservation and adhesion. Int J Esthet Dent. 2014;9(3):354-69.

Murray PE, Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J Endod. 2007;33(4):377-90.

Bottino MC, Kamocki K, Yassen GH, Platt JA, Vail MM, Ehrlich Y, et al. Bioactive nanofibrous scaffolds for regenerative endodontics. J Dent Res. 2013;92(11):963-9.

Zafar MS, Amin F, Fareed MA, Ghabbani H, Riaz S, Khurshid Z, Kumar N. Biomimetic Aspects of Restorative Dentistry Biomaterials. Biomimetics (Basel). 2020;5(3):34.

Mann S. The biomimetics of enamel: a paradigm for organized biomaterials synthesis. Ciba Foundation symposium. 1997;205:261-9.

Slavkin HC. Biomimetics: replacing body parts is no longer science fiction. J Am Dent Assoc. 1996;127(8):1254-7.

Magne P, Belser U. Bonded porcelain restorations in the anterior dentition: a biomimetic approach. London: Quintessence publishing company; 2002.

Magne P. Composite resins and bonded porcelain: the postamalgam era?. J California Dent Assoc. 2006;34(2):135-47.

Morin D, DeLong R, Douglas WH. Cusp reinforcement by the acid-etch technique. J Dent Res. 1984;63(8):1075-8.

Mount GJ. An atlas of glass-ionomer cements: a clinician's guide. India: CRC Press; 2001.

Scribante A, Bollardi M, Chiesa M, Poggio C, Colombo M. Flexural Properties and Elastic Modulus of Different Esthetic Restorative Materials: Evaluation after Exposure to Acidic Drink. Biomed Res Int. 2019;2019:5109481.

Chung SM, Yap AU, Tsai KT, Yap FL. Elastic modulus of resin-based dental restorative materials: a microindentation approach. J Biomed Mater Res B Appl Biomater. 2005;72(2):246-53.

Boaro LC, Gonçalves F, Guimarães TC, Ferracane JL, Versluis A, Braga RR. Polymerization stress, shrinkage and elastic modulus of current low-shrinkage restorative composites. Dent Mater. 2010;26(12):1144-50.

Trindade FZ, Valandro LF, Jager N, Bottino MA, Kleverlaan CJ. Elastic Properties of Lithium Disilicate Versus Feldspathic Inlays: Effect on the Bonding by 3D Finite Element Analysis. J Prosthodont. 2018;27(8):741-7.

Keogh P, Ray NJ, Lynch CD, Burke FM, Hannigan A. Surface microhardness of a resin composite exposed to a "first-generation" LED curing lamp, in vitro. Eur J Prosthodont Restor Dent. 2004;12(4):177-80.

Bala O, Arisu HD, Yikilgan I, Arslan S, Gullu A. Evaluation of surface roughness and hardness of different glass ionomer cements. Eur J Dent. 2012;6(1):79-86.

Abed Y, Sabry H, Alrobeigy N. Degree of conversion and surface hardness of bulk-fill composite versus incremental-fill composite. Tanta Dent J. 2015;12(2):71-80.

Zafar MS. A comparison of dental restorative materials and mineralized dental tissues for surface nanomechanical properties. Life Sci J. 2014;11(10):19-24.

Jones DW, Rizkalla AS. Characterization of experimental composite biomaterials. J Biomed Mater Res. 1996;33(2):89-100.

Ilie N, Hickel R, Valceanu AS, Huth KC. Fracture toughness of dental restorative materials. Clin Oral Investig. 2012;16(2):489-98.

Mount GJ. Buonocore Memorial Lecture. Glass-ionomer cements: past, present and future. Oper Dent. 1994;19(3):82-90.

Naasan MA, Watson TF. Conventional glass ionomers as posterior restorations. A status report for the American Journal of Dentistry. Am J Dent. 1998;11(1):36-45.

Pereira LC, Nunes MC, Dibb RG, Powers JM, Roulet JF, Navarro MF. Mechanical properties and bond strength of glass-ionomer cements. J Adhes Dent. 2002;4(1):73-80.

Bonifácio CC, Kleverlaan CJ, Raggio DP, Werner A, Carvalho RC, Amerongen WE. Physical-mechanical properties of glass ionomer cements indicated for atraumatic restorative treatment. Aust Dent J. 2009;54(3):233-7.

Zimehl R, Hannig M. Non-metallic restorative materials based on glass ionomer cements—recent trends and developments. Colloids Surf A: Physicochem Eng Aspec. 2000;163(1):55-62.

McCabe JF, Walls AW. Applied dental materials. 9th ed. John Wiley and Sons; 2013.

Mahoney E, Holt A, Swain M, Kilpatrick N. The hardness and modulus of elasticity of primary molar teeth: an ultra-micro-indentation study. J Dent. 2000;28(8):589-94.

Beyth N, Bahir R, Matalon S, Domb AJ, Weiss EI. Streptococcus mutans biofilm changes surface-topography of resin composites. Dent Mater. 2008;24(6):732-6.

Svanberg M, Mjör IA, Orstavik D. Mutans streptococci in plaque from margins of amalgam, composite, and glass-ionomer restorations. J Dent Res. 1990;69(3):861-4.

Pedrini D, Jardim Júnior E, Vasconcelos AC. Retention of oral microorganisms on conventional and resin-modified glass-ionomer cements. Pesqui Odontol Bras. 2001;15(3):196-200.

Baran G, Boberick K, McCool J. Fatigue of restorative materials. Crit Rev Oral Biol Med. 2001;12(4):350-60.

Alamoush RA, Silikas N, Salim NA, Nasrawi S, Satterthwaite JD. Effect of the Composition of CAD/CAM Composite Blocks on Mechanical Properties. Biomed Res Int. 2018;2018:4893143.

Opdam NJ, Bronkhorst EM, Roeters JM, Loomans BA. A retrospective clinical study on longevity of posterior composite and amalgam restorations. Dent Mater. 2007;23(1):2-8.

Burke FJT, Lucarotti PSK. The ultimate guide to restoration longevity in England and Wales. Part 3: Glass ionomer restorations - time to next intervention and to extraction of the restored tooth. Br Dent J. 2018;224(11):865-74.

Layton D, Walton T. An up to 16-year prospective study of 304 porcelain veneers. Int J Prosthodont. 2007;20(4):389-96.

Fradeani M, Redemagni M, Corrado M. Porcelain laminate veneers: 6- to 12-year clinical evaluation--a retrospective study. Int J Periodontics Restorative Dent. 2005;25(1):9-17.

Stoll R, Cappel I, Momeni A, Pieper K, Stachniss V. Survival of inlays and partial crowns made of IPS empress after a 10-year observation period and in relation to various treatment parameters. Oper Dent. 2007;32(6):556-63.

Gaengler P, Hoyer I, Montag R. Clinical evaluation of posterior composite restorations: the 10-year report. J Adhes Dent. 2001;3(2):185-94.

Wilder AD, May KN, Bayne SC, Taylor DF, Leinfelder KF. Seventeen-year clinical study of ultraviolet-cured posterior composite Class I and II restorations. J Esthet Dent. 1999;11(3):135-42.

Piotrowski BT, Gillette WB, Hancock EB. Examining the prevalence and characteristics of abfractionlike cervical lesions in a population of U.S. veterans. J Am Dent Assoc. 2001;132(12):1694-701.

Mohanty M, Govind S, Behera R. Biomimetic Materials in Restorative Dentistry and Endodontics–A Review. Indian J Forensic Med Toxicol. 2021;15(2).

Basheer N, Madhubala M, Sekar M. Future Perspectives of Biomimetics in Restorative Dentistry. J Pharmaceut Res Int. 2020;19-28.