Types and role of cytological molecular analysis in thyroid carcinomas
DOI:
https://doi.org/10.18203/2394-6040.ijcmph20214045Keywords:
FNAC, Genetic mutations, Molecular analysis, Thyroid carcinomasAbstract
Estimates show that thyroid nodules are commonly reported among populations residing in iodine-sufficient countries, with estimated prevalence rates of 1%, and 4% of palpable nodules among men and women in these countries, respectively. Furthermore, early diagnosis can effectively direct clinicians to the right management modality, especially in cases with malignant lesions. In this literature review, we have discussed the types and roles of cytological molecular analysis in thyroid carcinomas. Our findings indicate the molecular analysis can significantly add to the diagnostic accuracy of cytological analysis and can greatly add to the efficacy of differentiating benign from malignant lesions. We have discussed the roles of different genetic mutations that were reported among the various studies in the literature, including BRAF, RAS, PAX8/PPARγ, and RET mutations. BRAF mutations are the most validated mutations among the current studies in the literature, which has been reported to greatly increase the positive predictive values in detecting thyroid carcinomas. Some genetic mutations can be used to diagnose difficult to differentiate malignancies by fine needle aspiration (FNA) analysis. For instance, RAS mutations were reported to accurately diagnose follicular variants of papillary thyroid carcinomas that are difficult to detect using routine FNA analysis.
References
Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19(11):1167-1214.
Hegedüs L. Clinical practice. The thyroid nodule. N Engl J Med. 2004;351(17):1764-71.
Mahar SA, Husain A, Islam N. Fine needle aspiration cytology of thyroid nodule: diagnostic accuracy and pitfalls. J Ayub Med Coll Abbottabad. 2006;18(4):26-9.
Cooper DS, Doherty GM, Haugen BR. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines Taskforce. Thyroid. 2006;16(2):109-42.
Gharib H. Changing trends in thyroid practice: understanding nodular thyroid disease. Endocrine Pract. 2004;10(1):31-9.
Greaves TS, Olvera M, Florentine BD, Raza AS, Cobb CJ, Tsao-Wei DD, et al. Follicular lesions of thyroid: a 5‐year fine‐needle aspiration experience. Cancer Cytopathol. 2000;90(6):335-41.
Baloch ZW, LiVolsi VA, Asa SL. Diagnostic terminology and morphologic criteria for cytologic diagnosis of thyroid lesions: a synopsis of the National Cancer Institute Thyroid Fine-Needle Aspiration State of the Science Conference. Diagn Cytopathol. 2008;36(6):425-37.
Hsiao SJ, Nikiforov YE. Molecular approaches to thyroid cancer diagnosis. Endocrine-Related Cancer. 2014;21(5):301-13.
Baloch ZW, Fleisher S, LiVolsi VA, Gupta PK. Diagnosis of “follicular neoplasm”: a gray zone in thyroid fine‐needle aspiration cytology. Diagn Cytopathol. 2002;26(1):41-4.
Albarel F, Conte-Devolx B, Oliver C. From nodule to differentiated thyroid carcinoma: contributions of molecular analysis in 2012. Annales d'endocrinologie. 2012;73(3):155-64.
Moses W, Weng J, Sansano I. Molecular testing for somatic mutations improves the accuracy of thyroid fine-needle aspiration biopsy. World J Surg. 2010;34(11):2589-94.
Nikiforov YE, Steward DL, Robinson-Smith TM. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metabol. 2009;94(6):2092-8.
Pizzolanti G, Russo L, Richiusa P. Fine-needle aspiration molecular analysis for the diagnosis of papillary thyroid carcinoma through BRAF V600E mutation and RET/PTC rearrangement. Thyroid. 2007;17(11):1109-15.
Salvatore G, Giannini R, Faviana P. Analysis of BRAF point mutation and RET/PTC rearrangement refines the fine-needle aspiration diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metabol. 2004;89(10):5175-80.
Marchetti I, Iervasi G, Mazzanti CM, Lessi F, Tomei S, Naccarato AG, et al. Detection of the BRAF(V600E) mutation in fine needle aspiration cytology of thyroid papillary microcarcinoma cells selected by manual macrodissection: an easy tool to improve the preoperative diagnosis. Thyroid. 2012;22(3):292-8.
Nikiforov YE. Molecular diagnostics of thyroid tumors. Arch Pathol Lab Med. 2011;135(5):569-77.
Zatelli MC, Trasforini G, Leoni S, Frigato G, Buratto M, Tagliati F, et al. BRAF V600E mutation analysis increases diagnostic accuracy for papillary thyroid carcinoma in fine-needle aspiration biopsies. Eur J Endocrinol. 2009;161(3):467-73.
Nam SY, Han BK, Ko EY, Kang SS, Hahn SY, Hwang JY, et al. BRAF V600E mutation analysis of thyroid nodules needle aspirates in relation to their ultrasongraphic classification: a potential guide for selection of samples for molecular analysis. Thyroid. 2010;20(3):273-9.
Lee EJ, Song KH, Kim DL, Jang YM, Hwang TS, Kim SK. The BRAF(V600E) mutation is associated with malignant ultrasonographic features in thyroid nodules. Clin Endocrinol. 2011;75(6):844-50.
Patel A, Klubo-Gwiezdzinska J, Hoperia V, Larin A, Jensen K, Bauer A, Vasko V. BRAF(V600E) mutation analysis from May-Grünwald Giemsa-stained cytological samples as an adjunct in identification of high-risk papillary thyroid carcinoma. Endocr Pathol. 2011;22(4):195-9.
Rossi M, Buratto M, Bruni S, Filieri C, Tagliati F, Trasforini G, et al. Role of ultrasonographic/clinical profile, cytology, and BRAF V600E mutation evaluation in thyroid nodule screening for malignancy: a prospective study. J Clin Endocrinol Metab. 2012;97(7):2354-61.
Howell GM, Nikiforova MN, Carty SE, et al. BRAF V600E mutation independently predicts central compartment lymph node metastasis in patients with papillary thyroid cancer. Annals of surgical oncology. 2013;20(1):47-52.
Howell GM, Nikiforova MN, Carty SE, Armstrong MJ, Hodak SP, Stang MT, McCoy KL, Nikiforov YE, Yip L. BRAF V600E mutation independently predicts central compartment lymph node metastasis in patients with papillary thyroid cancer. Ann Surg Oncol. 2013;20(1):47-52.
Chung KW, Yang SK, Lee GK, Kim EY, Kwon S, Lee SH, et al. Detection of BRAFV600E mutation on fine needle aspiration specimens of thyroid nodule refines cyto-pathology diagnosis, especially in BRAF600E mutation-prevalent area. Clin Endocrinol (Oxf). 2006;65(5):660-6.
Kim SK, Hwang TS, Yoo YB, Han HS, Kim DL, Song KH, Lim SD, Kim WS, Paik NS. Surgical results of thyroid nodules according to a management guideline based on the BRAF(V600E) mutation status. J Clin Endocrinol Metab. 2011;96(3):658-64.
Kim SW, Lee JI, Kim JW, Ki CS, Oh YL, Choi YL, et al. BRAFV600E mutation analysis in fine-needle aspiration cytology specimens for evaluation of thyroid nodule: a large series in a BRAFV600E-prevalent population. J Clin Endocrinol Metab. 2010;95(8):3693-700.
Jin L, Sebo TJ, Nakamura N, Qian X, Oliveira A, Majerus JA, et al. BRAF mutation analysis in fine needle aspiration (FNA) cytology of the thyroid. Diagn Mol Pathol. 2006;15(3):136-43.
Rodrigues HG, de Pontes AA, Adan LF. Use of molecular markers in samples obtained from preoperative aspiration of thyroid. Endocr J. 2012;59(5):417-24.
Cheung CC, Carydis B, Ezzat S, Bedard YC, Asa SL. Analysis of ret/PTC gene rearrangements refines the fine needle aspiration diagnosis of thyroid cancer. J Clin Endocrinol Metabol. 2001;86(5):2187-90.
Cantara S, Capezzone M, Marchisotta S. Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J Clin Endocrinol Metabol. 2010;95(3):1365-9.
Ferraz C, Rehfeld C, Krogdahl A, Precht Jensen EM, Bösenberg E, Narz F, et al. Detection of PAX8/PPARG and RET/PTC rearrangements is feasible in routine air-dried fine needle aspiration smears. Thyroid. 2012;22(10):1025-30.
Gupta N, Dasyam AK, Carty SE, Nikiforova MN, Ohori NP, Armstrong M, et al. RAS mutations in thyroid FNA specimens are highly predictive of predominantly low-risk follicular-pattern cancers. J Clin Endocrinol Metab. 2013;98(5):914-22.
Mehta V, Nikiforov YE, Ferris RL. Use of molecular biomarkers in FNA specimens to personalize treatment for thyroid surgery. Head Neck. 2013;35(10):1499-506.
Basolo F, Pisaturo F, Pollina LE, Fontanini G, Elisei R, Molinaro E, et al. N-ras mutation in poorly differentiated thyroid carcinomas: correlation with bone metastases and inverse correlation to thyroglobulin expression. Thyroid. 2000;10(1):19-23.
Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol. 2003;120(1):71-7.
French CA, Alexander EK, Cibas ES. Genetic and biological subgroups of low-stage follicular thyroid cancer. American J Pathol. 2003;162(4):1053-60.
Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG, Nikiforov YE. PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol. 2002;26(8):1016-23.
Ohori NP, Nikiforova MN, Schoedel KE. Contribution of molecular testing to thyroid fine-needle aspiration cytology of "follicular lesion of undetermined significance/atypia of undetermined significance". Cancer Cytopathol. 2010;118(1):17-23.
Borrelli N, Ugolini C, Giannini R. Role of gene expression profiling in defining indeterminate thyroid nodules in addition to BRAF analysis. Cancer Cytopathol. 2016;124(5):340-9.
Polyak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment. Trends in genetics. 2009;25(1):30-8.
Clezardin P. Recent insights into the role of integrins in cancer metastasis. Cellular and molecular life sciences. 1998;54(6):541-8.
Prasad NB, Somervell H, Tufano RP. Identification of genes differentially expressed in benign versus malignant thyroid tumors. Clin Cancer Res. 2008;14(11):3327-37.