Recent advances in breast imaging reporting: a review of the BI-RADS® sixth edition
DOI:
https://doi.org/10.18203/2394-6040.ijcmph20260347Keywords:
BI-RADS®, Breast imaging, Mammography, Ultrasound, Contrast-enhanced mammography, Reporting guidelinesAbstract
The breast imaging reporting and data system (BI-RADS), developed by the American College of Radiology, serves as the cornerstone for standardized breast imaging interpretation and reporting. The Sixth Edition, released as the BI-RADS® v2025 Manual, represents a substantial evolution of the framework in response to advances in imaging technology, expanding clinical applications, and accumulated evidence highlighting limitations of earlier editions. This narrative review summarizes the major updates introduced in BI-RADS v2025 across mammography, ultrasound, magnetic resonance imaging, and contrast-enhanced mammography. Key revisions include refinement of breast density communication, formal integration of digital breast tomosynthesis-based lesion characterization, expanded ultrasound lexicon including non-mass lesions, elimination of ambiguous magnetic resonance imaging (MRI) terminology, incorporation of additional MRI descriptors, recognition of abbreviated MRI protocols, and elevation of contrast-enhanced mammography to a core modality. Collectively, these updates aim to improve reproducibility, harmonize reporting across modalities, and strengthen audit and quality assurance processes. Understanding these changes is essential for accurate interpretation, effective multidisciplinary communication, and consistent application in contemporary breast imaging practice.
Metrics
References
Harvey JA. The evolution of BI-RADS 3. J Breast Imaging. 2022;4(5):449-50. DOI: https://doi.org/10.1093/jbi/wbac055
Liberman L, Menell JH. Breast imaging reporting and data system (BI-RADS). Radiol Clin North Am. 2002;40(3):409-30. DOI: https://doi.org/10.1016/S0033-8389(01)00017-3
Spak DA, Plaxco JS, Santiago L, Dryden MJ, Dogan BE. BI-RADS fifth edition: a summary of changes. Diagn Interv Imaging. 2017;98(3):179-90. DOI: https://doi.org/10.1016/j.diii.2017.01.001
Choi JS. Breast imaging reporting and data system (BI-RADS): advantages and limitations. J Korean Soc Radiol. 2023;84(1):3-14. DOI: https://doi.org/10.3348/jksr.2022.0142
Eghtedari M, Chong A, Rakow-Penner R, Ojeda-Fournier H. Current status and future of BI-RADS in multimodality imaging. AJR Am J Roentgenol. 2021;216(4):860-73. DOI: https://doi.org/10.2214/AJR.20.24894
American College of Radiology (ACR). BI-RADS® v2025 manual—what’s new? Reston (VA): American College of Radiology. 2025. Available at: https://edge.sitecorecloud.io/americancoldf5f-acrorgf92a-productioncb02-3650/media/ACR/Files /RADS/BI-RADS/BIRADS-v2025-Whats-New.pdf. Accessed on 06 November 2025.
Sprague BL, Conant EF, Onega T, Garcia MP, Beaber EF, Herschorn SD, et al. Variation in mammographic breast density assessments among radiologists in clinical practice: a multicenter observational study. Ann Intern Med. 2016;165(7):457-64. DOI: https://doi.org/10.7326/M15-2934
Bent CK, Bassett LW, D’Orsi CJ, Sayre JW. The positive predictive value of BI-RADS microcalcification descriptors and final assessment categories. AJR Am J Roentgenol. 2010;194(5):1378-83. DOI: https://doi.org/10.2214/AJR.09.3423
Gennaro G, Toledano A, Di Maggio C, Baldan E, Bezzon E, La Grassa M, et al. Digital breast tomosynthesis versus digital mammography: a clinical performance study. Eur Radiol. 2010;20(7):1545-53. DOI: https://doi.org/10.1007/s00330-009-1699-5
Wasan R, Morel J, Iqbal A, Evans D, Goligher J, Peacock C, et al. Digital breast tomosynthesis improves diagnostic accuracy of circumscribed lesions by increasing margin visibility. Breast Cancer Res. 2014;16(Suppl 1):O6. DOI: https://doi.org/10.1186/bcr3701
Amir T, Ambinder EB, Harvey SC, Oluyemi ET, Jones MK, Honig E, et al. Benefits of digital breast tomosynthesis: a lesion-level analysis. J Med Screen. 2021;28(3):311-7. DOI: https://doi.org/10.1177/0969141320978267
Sickles EA. Mammographic features of early breast cancer. AJR Am J Roentgenol. 1984;143(3):461-4. DOI: https://doi.org/10.2214/ajr.143.3.461
Trimboli RM, Codari M, Bert A, Carbonaro LA, Maccagnoni S, Raciti D, et al. Breast arterial calcifications on mammography: intra- and interobserver reproducibility of a semiautomatic quantification tool. Radiol Med. 2018;123(3):168-73. DOI: https://doi.org/10.1007/s11547-017-0827-6
Burkett BJ, Hanemann CW. A review of supplemental screening ultrasound for breast cancer. Acad Radiol. 2016;23(12):1604-9. DOI: https://doi.org/10.1016/j.acra.2016.05.017
Wang ZL, Li N, Li M, Wan WB. Non-mass-like lesions on breast ultrasound: classification and correlation with histology. Radiol Med. 2015;120(10):905-10. DOI: https://doi.org/10.1007/s11547-014-0493-x
Berg WA, Campassi CI, Ioffe OB. Cystic lesions of the breast: sonographic-pathologic correlation. Radiology. 2003;227(1):183-91. DOI: https://doi.org/10.1148/radiol.2272020660
Loonis AS, Chesebro AL, Bay CP, Portnow LH, Weiss A, Chikarmane SA, et al. Positive predictive value of axillary lymph node cortical thickness in newly diagnosed breast cancer. Breast Cancer Res Treat. 2024;203(3):511-21. DOI: https://doi.org/10.1007/s10549-023-07155-z
Stachs A, Thi AT, Dieterich M, Stubert J, Hartmann S, Glass Ä, et al. Ultrasound features predicting axillary nodal metastasis in breast cancer. Ultrasound Int Open. 2015;1(1):E19-24. DOI: https://doi.org/10.1055/s-0035-1555872
Comen EA, Norton L, Massagué J. Breast cancer tumor size, nodal status, and prognosis: biology trumps anatomy. J Clin Oncol. 2011;29(19):2610-20. DOI: https://doi.org/10.1200/JCO.2011.36.1873
Arponen O, Masarwah A, Sutela A, Taina M, Könönen M, Sironen R, et al. Incidentally detected enhancing lesions on breast MRI: ADC and T2 signal intensity improve specificity. Eur Radiol. 2016;26(12):4361-70. DOI: https://doi.org/10.1007/s00330-016-4326-2
Jirarayapong J, Portnow LH, Chikarmane SA, Lan Z, Gombos EC. High peritumoral and intratumoral T2 signal intensity in HER2-positive breast cancers. AJR Am J Roentgenol. 2024;222(2):e2330280. DOI: https://doi.org/10.2214/AJR.23.30280
Mori N, Mugikura S, Takase K. Extra- or peritumoral hyperintensity on T2-weighted images in breast cancer. Radiology. 2022;302(2):E7-8. DOI: https://doi.org/10.1148/radiol.2021210939
Cheon H, Kim HJ, Kim TH, Ryeom HK, Lee J, Kim GC, et al. Prognostic value of peritumoral edema on preoperative breast MRI. Radiology. 2018;287(1):68-75. DOI: https://doi.org/10.1148/radiol.2017171157
Harvey SC, Di Carlo PA, Lee B, Obadina E, Sippo D, Mullen L. An abbreviated protocol for high-risk screening breast MRI. J Am Coll Radiol. 2016;13(11):R74-80. DOI: https://doi.org/10.1016/j.jacr.2016.09.031
Mango VL, Morris EA, Dershaw DD, Abramson A, Fry C, Moskowitz CS, et al. Abbreviated protocol for breast MRI: are multiple sequences needed? Eur J Radiol. 2015;84(1):65-70. DOI: https://doi.org/10.1016/j.ejrad.2014.10.004
Deike-Hofmann K, Koenig F, Paech D, Dreher C, Delorme S, Schlemmer HP, et al. Abbreviated MRI protocols in breast cancer diagnostics. J Magn Reson Imaging. 2019;49(3):647-58. DOI: https://doi.org/10.1002/jmri.26525
Neeter LM, Robbe MQ, van Nijnatten TJ, Jochelson MS, Raat HP, Wildberger JE, et al. Diagnostic performance of contrast-enhanced mammography versus breast MRI: a systematic review and meta-analysis. J Cancer. 2023;14(1):174-86. DOI: https://doi.org/10.7150/jca.79747
Pötsch N, Vatteroni G, Clauser P, Helbich TH, Baltzer PA. Contrast-enhanced mammography versus contrast-enhanced breast MRI: a systematic review and meta-analysis. Radiology. 2022;305(1):94-103. DOI: https://doi.org/10.1148/radiol.212530
Giannakaki AG, Giannakaki MN, Baroutis D, Koura S, Papachatzopoulou E, Marinopoulos S, et al. Preoperative breast MRI and histopathology in breast cancer: concordance, challenges, and emerging role of CEM and multiparametric MRI. Diagnostics (Basel). 2025;15(23):3032. DOI: https://doi.org/10.3390/diagnostics15233032