Nanotechnology in contemporary dentistry: a comprehensive review of current clinical applications, bioactive materials, and future perspectives
DOI:
https://doi.org/10.18203/2394-6040.ijcmph20260326Keywords:
Nanotechnology, Bioactivity, Nanocomposites, Osseointegration, Restorative, Biomimetics, InnovationAbstract
This review explores the transformative shift in dentistry from biopassive materials to bioactive nanotechnology, addressing critical challenges such as polymerization shrinkage, secondary caries, and mechanical failure. Through a systematic search of PubMed, Scopus, Cochrane, and Google Scholar (2015–2026), the study evaluates the mechanisms and clinical efficacy of bioactive glass (BAG), nanohydroxyapatite (nHA), and calcium-phosphate scaffolds. Findings indicate that these nanomaterials outperform traditional composites by enabling deep biomimetic remineralization, providing Power of Hydrogen (pH)-responsive ion release, and reducing polymerization stress by up to 37% through advanced fillers like nanoclay. In clinical practice, nanotechnology enhances the polishability and wear resistance of restoratives, optimizes osseointegration via nanofeatured implant surfaces, and improves endodontic sealing through nanoparticle-enhanced sealers. The review concludes that the integration of smart stimuli-responsive systems, Artificial Intelligence (AI), and three-dimensional (3D) bioprinting is transitioning the field from prosthetic replacement to full biological tooth regeneration, establishing nanotechnology as the cornerstone of personalized, regenerative oral healthcare.
Metrics
References
Sivamani S, Anitha V, Fatima N, Ramani S. Dental Materials: A Comprehensive Review of Evolution, Classification, Challenges and Future Prospects. Int J Cur Res Rev. 2023;15(24):09-16. DOI: https://doi.org/10.31782/IJCRR.2023.152403
Marin E. History of Dental Biomaterials: Biocompatibility, Durability and Still Open Challenges. Heritage Sci. 2023;11(1). DOI: https://doi.org/10.1186/s40494-023-01046-8
Pałka K, Janiczuk P, Kleczewskal J. Polymerization shrinkage of resin mixtures used in dental composites. Engineering of Biomaterials. 2020;(154):16-21.
Jokstad A. Secondary caries and microleakage. Dent Mater. 2016;32(1):211-58. DOI: https://doi.org/10.1016/j.dental.2015.09.006
Ceci M, Viola M, Rattalino D, Beltrami R, Colombo M, Poggio C. Discoloration of different esthetic restorative materials: A spectrophotometric evaluation. Eur J Dent. 2017;11(2):149-56. DOI: https://doi.org/10.4103/ejd.ejd_313_16
Nejat AH. Overview of Current Dental Ceramics. Den Clin of North Am. 2025;29(2):155-71. DOI: https://doi.org/10.1016/j.cden.2024.11.001
Voolta NR, Reddy KV. Osseointegration- Key Factors Affecting Its Success-an Overview. IOSR J Dent Med Sci. 2017;16(04):62-8. DOI: https://doi.org/10.9790/0853-1604056268
Ozak ST, Ozkan P. Nanotechnology and dentistry. Eur J Dent. 2013;7(1):145-51.
Deshpande AS, Daddanala A, Kaur M, Chahen NA, Patel M, Tummeti N. Nanotechnology in Dentistry: Bridging Science and Practice. Bioinformation. 2025;21(3):522-8. DOI: https://doi.org/10.6026/973206300210522
Mann T. Innovations in Dental Materials: Advancements Transforming Modern Dentistry. J Gen Dent. 2023;4(4):001.
Dixit S, Iftikhar N, Agramonte EC, Sur D. The Role of Bioactive Glasses in Modern Dentistry: From Remineralization to Regeneration. Saudi J Oral Dent Res. 2025;10(2):86-93. DOI: https://doi.org/10.36348/sjodr.2025.v10i02.001
Thomas NG, Junior FGS, Ninan N, Anil S, Raju RS, Varghese N, et al. Bioglass in Dentistry: A Comprehensive Review of Current Applications and Innovative Frontiers. J Dent. 2025;162:106017. DOI: https://doi.org/10.1016/j.jdent.2025.106017
Sawant K, Pawar AM. Bioactive glass in dentistry: A systematic review. Saudi J Oral Sci. 2020;7(1):3-10. DOI: https://doi.org/10.4103/sjos.SJOralSci_56_19
Pushpalatha C, Gayathri VS, Sowmya SV, Augustine D, Alamoudi A, Zidane B, et al. Nanohydroxyapatite in dentistry: A comprehensive review. Saudi Dent J. 2023;35(6):741-52. DOI: https://doi.org/10.1016/j.sdentj.2023.05.018
Gennai S. Nano-Hydroxyapatite Clinical Applications in Dentistry.Oral Health Case Rep. 2022;8:66.
Izzetti R, Gennai S, Nisi M, Gulia F, Miceli M, Giuca MR. Clinical Applications of Nano-Hydroxyapatite in Dentistry. Appl Sci. 2022;12(21):10762. DOI: https://doi.org/10.3390/app122110762
Anil A, Ibraheem WI, Meshni AA, Preethanath RS, Anil S. Nano-Hydroxyapatite (nHAp) in the Remineralization of Early Dental Caries: A Scoping Review. Int J Environ Res Public Health. 2022;19(9):56296. DOI: https://doi.org/10.3390/ijerph19095629
Mishchenko O, Yanovska A, Kosinov O, Maksymov D, Moskalenko R, Ramanavicius A, et al. Synthetic Calcium-Phosphate Materials for Bone Grafting. Polymers (Basel). 2023;15(18):3822. DOI: https://doi.org/10.3390/polym15183822
Devadiga D, Shetty P, Hegde MN, Reddy U. Bioactive remineralization of dentin surface with calcium phosphate-based agents: An in vitro analysis. J Conserv Dent. 2022;25(1):93-7. DOI: https://doi.org/10.4103/jcd.jcd_583_21
Rujiraprasert, P, Suriyasangpetch, S, Srijunbarl, A, Singthong T, Makornpan C, Nampuksa K, et al. Calcium phosphate ceramic as a model for enamel substitute material in dental applications. BDJ Open. 2023;9(1):25. DOI: https://doi.org/10.1038/s41405-023-00152-w
Lee S-Y, Yun H-M, Perez RA, Gallinetti S, Ginebra M-P, Choi S-J, et al. Nanotopological-Tailored Calcium Phosphate Cements for the Odontogenic Stimulation of Human Dental Pulp Stem Cells through Integrin Signaling. RSC Adv. 2015;5(1):63363-71. DOI: https://doi.org/10.1039/C5RA11564G
Garoushi S, Peltola T, Siekkinen M, Hupa L, Vallittu PK, Lassila L, et al. Retention of strength and ion release of some restorative materials. Odontology. 2025;113(2):714-23. DOI: https://doi.org/10.1007/s10266-024-01010-3
Venkataiah VS, Krithikadatta J, Teja KV, Mehta D, Doble M. Ion release dynamics of bioactive resin cement under variable pH conditions. Front Oral Health. 2025;6:1564838. DOI: https://doi.org/10.3389/froh.2025.1564838
Raszewski Z, Chojnacka K, Ponto-Wolska M, Mikulewicz M. Ion Release from Endodontic and Restorative Dental Materials: Effects of pH and Time. Materials (Basel). 2025;18(9):1901. DOI: https://doi.org/10.3390/ma18091901
Par M, Gubler A, Attin T, Tarle Z, Tarle A, Tauböck TT. Ion release and hydroxyapatite precipitation of resin composites functionalized with two types of bioactive glass. J Dent. 2022;118:103950. DOI: https://doi.org/10.1016/j.jdent.2022.103950
Zhang L, Yu P, Wang XY. Surface roughness and gloss of polished nanofilled and nanohybrid resin composites. J Dent Sci. 2021;16(4):1198-203. DOI: https://doi.org/10.1016/j.jds.2021.03.003
Tyagi J, Taneja S, Patil A. Effect of Different Finishing and Polishing Systems on Surface Roughness and Surface Microhardness of Microhybrid, Nanohybrid and Nanofilled Composites- an in Vitro Study. J Dent Special. 2025;13(1):125-30. DOI: https://doi.org/10.18231/j.jds.2025.019
Fidan M, Çankaya N. Effect of Food-Simulating Liquids and Polishing Times on the Color Stability of Microhybrid and Nanohybrid Resin Composites. Discover Nano. 2025;20(1):43. DOI: https://doi.org/10.1186/s11671-025-04205-x
Abo-Eldahab G, Kamel M. Color Stability of Nanofilled and Suprananofilled Resin Composites with Different Polishing Techniques after Immersion in Coffee Solution. Egypt Dent J. 2023;69(1):827. DOI: https://doi.org/10.21608/edj.2022.175150.2350
Yilmaz EC, Sadeler R, Duymus ZY, Öcal M. Effects of Two-Body Wear on Microfill, Nanofill, and Nanohybrid Restorative Composites. Biomed Biotechnol Res J. 2017;1(1):25-8. DOI: https://doi.org/10.4103/bbrj.bbrj_36_17
Dionysopoulos D, Gerasimidou O. Wear of contemporary dental composite resin restorations: a literature review. Restor Dent Endod. 2021;46(2):e18. DOI: https://doi.org/10.5395/rde.2021.46.e18
Chen F, Sun L, Luo H, Yu P, Lin J. Influence of Filler Types on Wear and Surface Hardness of Composite Resin Restorations. J of Appl Biomater Funct Mater. 2023;21:22808000231193524. DOI: https://doi.org/10.1177/22808000231193524
AsefI S, Eskandarion S, Shafiei F, Kharazifard MJ. Comparison of Wear Resistance between Innovative Composites and Nano- and Microfilled Composite Resins. Avicenna J Dent Res. 2016;8(1):7. DOI: https://doi.org/10.17795/ajdr.28607
Komatsu K, Matsuura T, Cheng J, Kido D, Park W, Ogawa T. Nanofeatured surfaces in dental implants: contemporary insights and impending challenges. Int J Implant Dent. 2024;10(1):34. DOI: https://doi.org/10.1186/s40729-024-00550-1
Costa Filho PMD, Marcantonio CC, Oliveira DP, Lopes MES, Puetate JCS, Faria LV. Titanium micro-nano textured surface with strontium incorporation improves osseointegration: an in vivo and in vitro study. J Appl Oral Sci. 2024;32:e20240144. DOI: https://doi.org/10.1590/1678-7757-2024-0144
Sartoretto SC, Calasans-Maia J, Resende R, Câmara E, Ghiraldini B, Barbosa Bezerra FJ, et al. The Influence of Nanostructured Hydroxyapatite Surface in the Early Stages of Osseointegration: A Multiparameter Animal Study in Low-Density Bone. Int J Nanomed. 2020;15:8803-17. DOI: https://doi.org/10.2147/IJN.S280957
Parnia F, Yazdani J, Javaherzadeh V, Maleki Dizaj S. Overview of Nanoparticle Coating of Dental Implants for Enhanced Osseointegration and Antimicrobial Purposes. J Pharm Pharm Sci. 2017;20(0):148-60. DOI: https://doi.org/10.18433/J3GP6G
Wagih M, Hassanien E, Nagy M. Sealing Ability and Adaptability of Nano Mineral Trioxide Aggregate as a Root-End Filling Material. Open Access Maced J Med Sci. 2022;10(D):323-30. DOI: https://doi.org/10.3889/oamjms.2022.10080
Tiffany SA, Abidin T, Prasetia W. Nanotechnology Implementation as Root Canal Sealer. Dentika Dent J. 2024;27(1):64-72. DOI: https://doi.org/10.32734/dentika.v27i1.14542
Chandak PG, Ghanshyamdasj M, Chandak C, Relan KN, Chandak M, Rathi C, et al. Nanoparticles in endodontics - a review. J Evolution Med Dent Sci. 2021;10(13):976-82. DOI: https://doi.org/10.14260/jemds/2021/209
Tarek H, Kamel WH, Sabet NE, Abdelwahed A. The effect of nanoparticles incorporation on antimicrobial and bond strength properties of bio-ceramic sealer (An In Vitro Study). Future D J. 2025;10(2):72-84.
Campos LMP, Boaro LC, Santos TMR, Juvino V, Romano RSG, Santos MJ, et al. Polymerization shrinkage evaluation in experimental dental composite filled with montmorillonite nanoparticles. J Therm Analysis Calorimetry. 2017;13(1):771-4. DOI: https://doi.org/10.1007/s10973-017-6419-9
Fronza BM, Rad IY, Shah PK, Barros MD, Giannini M, Stansbury JW. Nanogel-Based Filler-Matrix Interphase for Polymerization Stress Reduction. J Dent Res. 2019;98(7):779-85. DOI: https://doi.org/10.1177/0022034519845843
Alhussein A, Alsahafi R, Balhaddad AA, Mokeem L, Schneider A, Jabra-Rizk MA, et al. Novel Bioactive Nanocomposites Containing Calcium Fluoride and Calcium Phosphate with Antibacterial and Low-Shrinkage-Stress Capabilities to Inhibit Dental Caries. Bioengineering (Basel). 2023;10(9):991. DOI: https://doi.org/10.3390/bioengineering10090991
Masulili BI, Suprastiwi E, Artiningsih DANP, Novista C. Comparison of volumetric shrinkage of composite resin nanoceramic and nanofiller. Int J Appl Pharm. 2020;12(2):1-3. DOI: https://doi.org/10.22159/ijap.2020.v12s2.OP-02
Khalifa HO, Oreiby A, Mohammed T, Abdelhamid MAA, Sholkamy EN, Hashem H, et al. Silver nanoparticles as next-generation antimicrobial agents: mechanisms, challenges, and innovations against multidrug-resistant bacteria. Front Cell Infect Microbiol. 2025:1599113. DOI: https://doi.org/10.3389/fcimb.2025.1599113
Song W, Ge S. Application of Antimicrobial Nanoparticles in Dentistry. Molecules. 2019;24(6):1033. DOI: https://doi.org/10.3390/molecules24061033
Ahmed O, Sibuyi NRS, Fadaka AO, Madiehe AM, Maboza, E, Olivier A, et al. Antimicrobial Effects of Gum Arabic-Silver Nanoparticles against Oral Pathogens. Bioinorg Chem Appl. 2022;2022:9602325. DOI: https://doi.org/10.1155/2022/9602325
Ferrando-Magraner E, Bellot-Arcís C, Paredes-Gallardo V, Almerich-Silla JM, García-Sanz V, Fernández-Alonso M, et al. Antibacterial Properties of Nanoparticles in Dental Restorative Materials. A Systematic Review and Meta-Analysis. Medicina (Kaunas). 2020;56(2):55. DOI: https://doi.org/10.3390/medicina56020055
Waghmode S, Ingole RS, Hadakar S, Gaikwad P, Dogra AK, Gulia S. Comparative Study on Antibacterial Efficacy, Hydroxyapatite Crystal, Fluoride Release and Microleakage in Bioactive Restorative Materials. J Pharm Bioallied Sci. 2025;17:S1460-2. DOI: https://doi.org/10.4103/jpbs.jpbs_1892_24
Samir SAM, Hussein B. Fluoride Release and Solubility of New Bioactive Restoratives used in Pediatric Dentistry Part 1 (Fluoride Release). J Res Med Dent Sci. 2022;10(3):168-74.
El-Adl ET, Ebaya MM, Zaghloul NM. Immediate Fluoride Release by Three Bioactive Restorative Materials: An In Vitro Study. Int J Dent Med Sci Res. 2024;6(1):258-26.
Puspitasari D, Alzahrah NF, Tari II, Wibowo D, Arifin R, Dewi RK, et al. The release of fluoride ions of bioactive resin in the solution of lactic acid and artificial saliva. Dent J Kedokteran Gigi. 2022;7(2):113. DOI: https://doi.org/10.20527/dentino.v7i2.14614
Mayya A, Chatra A, Dsouza V, Seetharam RN, Acharya SR, Vasanthan KS. Biomaterials to biofabrication: advanced scaffold technologies for regenerative endodontics. Biomed Phys Eng Express. 2025;12(1). DOI: https://doi.org/10.1088/2057-1976/ae2b75
Smaida R, Hua G, Benkirane-Jessel N, Fioretti F. Three-Dimensional Models of the Dental Pulp: Bridging Fundamental Biology and Regenerative Therapy. Int J Mol Sci. 2025;26(22):10960. DOI: https://doi.org/10.3390/ijms262210960
Chen Y, Wei J. Application of 3D Printing Technology in Dentistry: A Review. Polymers (Basel). 2025;17(7):886. DOI: https://doi.org/10.3390/polym17070886
Chander NG, Gopi A. Trends and future perspectives of 3D printing in prosthodontics. Med J Armed Forces India. 2024;80(4):399-403. DOI: https://doi.org/10.1016/j.mjafi.2024.05.003
Ostrovidov S, Ramalingam M, Bae H, Orive G, Fujie T, Shi X, et al. Bioprinting and biomaterials for dental alveolar tissue regeneration. Front. Bioeng. Biotechnol. 2023;11:991821. DOI: https://doi.org/10.3389/fbioe.2023.991821