Overview of solar radiation exposure to the human health particularly to the eye: a review article facts and figures till today
DOI:
https://doi.org/10.18203/2394-6040.ijcmph20260333Keywords:
Ultraviolet radiation, Solar radiation, UV-A, UV-B, Sunglasses, Immune system, Skin healthAbstract
Exposure to solar radiation (SR) induces photochemical and thermal damage to ocular tissues, primarily via ultraviolet radiation (UVR), affecting outdoor workers and recreational users globally. Short-term effects include photokeratitis (corneal inflammation, akin to "snow blindness") and photoretinitis, while chronic exposure leads to cataracts, pterygium, corneal degeneration, and eyelid cancers. High-altitude and snowy areas intensify UVR by up to 85% reflection from fresh snow, exacerbating risks for unprotected eyes in both children and adults. This review synthesizes evidence from epidemiological studies, clinical case series, and photobiology research up to 2025, including world health organization (WHO) global burden estimates and occupational exposure data. Key sources encompass PubMed/PMC articles on UVR mechanisms (e. g., Bunsen-Roscoe reciprocity law for cumulative damage) and field measurements of ultraviolet (UV) reflectance in elevated/snowy terrains. Analysis focuses on human health impacts, prioritizing eye-specific outcomes via qualitative synthesis without meta-analysis. Acute UVR exposure causes painful photokeratitis and conjunctivitis, with snow reflection increasing retinal stress and erythropsia (temporary red vision). Chronic effects show outdoor workers with 4-fold higher pterygium odds and substantial cataract burden (e.g., 529,242 DALYs globally per WHO). Skin and immune impacts include immunosuppression and higher skin cancer rates, with solar retinopathy from direct gazing causing permanent macular damage; 100% UV-protective sunglasses mitigate nearly all risks. SR endangers eyes and skin profoundly in reflective environments, urging optometrists and ophthalmologists to recommend 100% UVA/UVB-blocking sunglasses for patients visiting high altitudes or snowy areas. Prioritizing protection prevents acute injuries and chronic diseases, promoting public health education on evidence-based eyewear selection.
Metrics
References
Sollitto RB, Kraemer KH, DiGiovanna JJ. Normal vitamin D levels can be maintained despite rigorous photoprotection: six years' experience with xeroderma pigmentosum. J Am Acad Dermatol. 1997;37(6):942-7. DOI: https://doi.org/10.1016/S0190-9622(97)70069-0
Marks R, Foley PA, Jolly D, Knight KR, Harrison J, Thomson SC. The effect of regular sunscreen use on vitamin D levels in an Australian population. Arch Dermatol. 1995;131(4):415-21. DOI: https://doi.org/10.1001/archderm.1995.01690160043006
Edwards KH. Intraocular lens short wavelength light filtering. Clin Exp Optom. 2010;93(6):390-9. DOI: https://doi.org/10.1111/j.1444-0938.2010.00538.x
Roberts JE. Ultraviolet radiation as a risk factor for cataract and macular degeneration. Eye Contact Lens. 2011;37(4):246-9. DOI: https://doi.org/10.1097/ICL.0b013e31821cbcc9
Dongre AM. Ultraviolet protective properties of branded and unbranded sunglasses available in the Indian market in UV phototherapy chambers. Indian J Dermatol Venereol Leprol. 2007;73(1):26-8. DOI: https://doi.org/10.4103/0378-6323.30647
Modenese A, Gobba F. Cataract frequency and subtypes involved in workers assessed for their solar radiation exposure: a systematic review. Acta Ophthalmol. 2018;96(8):779-88. DOI: https://doi.org/10.1111/aos.13734
Marchitti SA, Chen Y, Thompson DC, Vasiliou V. Ultraviolet radiation: cellular antioxidant response and the role of ocular aldehyde dehydrogenase enzymes. Eye Contact Lens. 2011;37(4):206-13. DOI: https://doi.org/10.1097/ICL.0b013e3182212642
Korzeniewski K. Eye diseases in travelers. Int Marit Health. 2020;71(2):78-84. DOI: https://doi.org/10.5603/IMH.2020.0015
Grandi C, D'Ovidio MC. Balance between health risks and benefits for outdoor workers exposed to solar radiation: an overview on the role of near infrared radiation alone and in combination with other solar spectral bands. Int J Environ Res Public Health. 2020;17(4):1357. DOI: https://doi.org/10.3390/ijerph17041357
Marshall J. Light in man's environment. Eye (Lond). 2016;30(2):211-4. DOI: https://doi.org/10.1038/eye.2015.265
Gichuhi S, Ohnuma S, Sagoo MS, Burton MJ. Pathophysiology of ocular surface squamous neoplasia. Exp Eye Res. 2014;129:172-82. DOI: https://doi.org/10.1016/j.exer.2014.10.015
Izadi M, Jonaidi-Jafari N, Pourazizi M, Alemzadeh-Ansari MH, Hoseinpourfard MJ. Photokeratitis induced by ultraviolet radiation in travelers: a major health problem. J Postgrad Med. 2018;64(1):40-6. DOI: https://doi.org/10.4103/jpgm.JPGM_52_17
Jurja S, Hîncu M, Dobrescu MA, Golu AE, Balasoiu AT, Coman M. Ocular cells and light: harmony or conflict? Rom J Morphol Embryol. 2014;55(1):257-61.
Modenese A, Gobba F. Occupational exposure to solar radiation at different latitudes and pterygium: a systematic review of the last 10 years of scientific literature. Int J Environ Res Public Health. 2017;15(1):37. DOI: https://doi.org/10.3390/ijerph15010037
Contín MA, Benedetto MM, Quinteros-Quintana ML, Guido ME. Light pollution: the possible consequences of excessive illumination on retina. Eye (Lond). 2016;30(2):255-63. DOI: https://doi.org/10.1038/eye.2015.221
Young AR. Acute effects of UVR on human eyes and skin. Prog Biophys Mol Biol. 2006;92(1):80-5. DOI: https://doi.org/10.1016/j.pbiomolbio.2006.02.005
Coroneo M. Ultraviolet radiation and the anterior eye. Eye Contact Lens. 2011;37(4):214-24. DOI: https://doi.org/10.1097/ICL.0b013e318223394e
International Commission on Non-Ionizing Radiation Protection. Guidelines on limits of exposure to incoherent visible and infrared radiation. Health Phys. 2013;105(1):74-96. DOI: https://doi.org/10.1097/HP.0b013e318289a611
Bunsen RW, Roscoe HE. On the measurement of the chemical action of direct and diffuse sunlight. Proc R Soc Lond. 1863;12:306-12. DOI: https://doi.org/10.1098/rspl.1862.0069
Fisher GJ, Wang ZQ, Datta SC, Varani J, Kang S, Voorhees JJ. Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med. 1997;337(20):1419-28. DOI: https://doi.org/10.1056/NEJM199711133372003
Pearse AD, Gaskell SA, Marks R. Epidermal changes in human skin following irradiation with either UVB or UVA. J Invest Dermatol. 1987;88(1):83-7. DOI: https://doi.org/10.1111/1523-1747.ep12465094
Sliney DH. How light reaches the eye and its components. Int J Toxicol. 2002;21(6):501-9. DOI: https://doi.org/10.1080/10915810290169927
Tenkate TD. Ocular ultraviolet radiation exposure of welders. Scand J Work Environ Health. 2017;43(3):287-8. DOI: https://doi.org/10.5271/sjweh.3630
Reidenbach HD, Hofmann J, Dollinger K. Active physiological protective reactions should be used as a prudent precaution safety means in the application of low-power laser radiation. In: Magjarevic R, Nagel JH, editors. IFMBE Proceedings. Berlin: Springer. 2006;26903.
Alfonso JH, Bauer A, Bensefa-Colas L. Minimum standards on prevention, diagnosis and treatment of occupational and work-related skin diseases in Europe: position paper of the COST Action StanDerm (TD1206). J Eur Acad Dermatol Venereol. 2017;31(4):31-43. DOI: https://doi.org/10.1111/jdv.14319
Moan J, Juzeniene A. Solar radiation and human health. J Photochem Photobiol B. 2010;101(2):109-10. DOI: https://doi.org/10.1016/j.jphotobiol.2010.08.004
Chawda D, Shinde P. Effects of solar radiation on the eyes. Cureus. 2022;14(10):e30857. DOI: https://doi.org/10.7759/cureus.30857