Correlation between fast food consumption and lipid profiles

Authors

  • Muath A. Alsoliman Department of Family Medicine, Ministry of Defense, Riyadh, Saudi Arabia
  • Khalid F. Alotaibi Department of Family Medicine, Al-Nakheel Medical Center, Riyadh, Saudi Arabia
  • Anas S. Alkhulaifi Department of Family Medicine, Al-Nakheel Medical Center, Riyadh, Saudi Arabia

DOI:

https://doi.org/10.18203/2394-6040.ijcmph20254097

Keywords:

Fast-food, Dyslipidemia, Lipid profile, Total cholesterol, Low-density lipoprotein cholesterol, Triglycerides, High-density lipoprotein cholesterol

Abstract

Abnormalities in lipid profile, known as dyslipidemia, refer to elevated levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG), in addition to low levels of high-density lipoprotein cholesterol (HDL-C) in the blood. Dyslipidemia is widely spread among the population, and this rise in dyslipidemia is attributed to changes in dietary habits and shifts towards fast food predominated diet. The widespread consumption of fast food is linked to adverse health impacts, including rise in obesity, diabetes, and cardiovascular diseases. Fast food is characterized by large portion size and unusually high energy density. It contains higher levels of sugars, fats, and salt, in addition to suboptimal levels of dietary fibers and micronutrients. Moreover, due to the heavy processing and packaging of fast food, it usually contains harmful compounds and by-products that further exacerbate the undesirable health impacts of fast-food diet. This narrative review aims to outline current knowledge regarding the association between the rise in fast food consumption and lipid profile abnormalities, including how the poor nutritional composition of fast food contributes to fluctuations in TC, TG, LDL-C and HDL-C levels in the blood and development of dyslipidemia.

Metrics

Metrics Loading ...

References

Pereira MA, Kartashov AI, Ebbeling CB, Van Horn L, Slattery ML, Jacobs DR, et al. Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis. Lancet (London, England). 2005;365(9453):36-42. DOI: https://doi.org/10.1016/S0140-6736(04)17663-0

Soans JS, Noronha JA, Mundkur SC, Nayak BS, Garg M, Jathanna RD, et al. Mapping evidence on the impact of junk food on anaemia among adolescent and adult population: a scoping review. BMC Nutr. 2025;11(1):96. DOI: https://doi.org/10.1186/s40795-025-01079-1

Fardet A, Rock E. Ultra-Processed Foods and Food System Sustainability: What Are the Links? Sustainability. 2020;12(15). DOI: https://doi.org/10.3390/su12156280

Bruwer M, Neethling L. Fast-food drive-throughs in developing countries: A modern convenience perpetuating unsustainable transport decisions? Int Rev Spatial Planning Sustainable Development. 2022;10:209-27. DOI: https://doi.org/10.14246/irspsd.10.1_209

Hassan R, Shamim AA, Ali M, Amin MR. What Drives Fast Food Consumption in Asian Low- and Middle-Income Countries?-A Narrative Review of Patterns and Influencing Factors. Public Health Challenges. 2025;4(3):e70095. DOI: https://doi.org/10.1002/puh2.70095

Lu X, Xie Q, Pan X, Zhang R, Zhang X, Peng G, et al. Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Signal Transduction Target Ther. 2024;9(1):262. DOI: https://doi.org/10.1038/s41392-024-01951-9

Brunham LR, Lonn E, Mehta SR. Dyslipidemia and the Current State of Cardiovascular Disease: Epidemiology, Risk Factors, and Effect of Lipid Lowering. Canad J Cardiol. 2024;40(8s):S4-12. DOI: https://doi.org/10.1016/j.cjca.2024.04.017

Ballena-Caicedo J, Zuzunaga-Montoya FE, Loayza-Castro JA, Vásquez-Romero LEM, Tapia-Limonchi R, De Carrillo CIG, et al. Global prevalence of dyslipidemias in the general adult population: a systematic review and meta-analysis. J Health Population Nutr. 2025;44(1):308. DOI: https://doi.org/10.1186/s41043-025-01054-3

Clemente-Suárez VJ, Beltrán-Velasco AI, Redondo-Flórez L, Martín-Rodríguez A, Tornero-Aguilera JF. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients. 2023;15(12). DOI: https://doi.org/10.3390/nu15122749

Zota AR, Phillips CA, Mitro SD. Recent Fast Food Consumption and Bisphenol A and Phthalates Exposures among the U.S. Population in NHANES, 2003-2010. Environ Health Perspectives. 2016;124(10):1521-8. DOI: https://doi.org/10.1289/ehp.1510803

Zahir A, Ge Z, Khan IA. Public Health Risks Associated with Food Process Contaminants – A Review. J Food Protect. 2025;88(2):100426. DOI: https://doi.org/10.1016/j.jfp.2024.100426

Prentice AM, Jebb SA. Fast foods, energy density and obesity: a possible mechanistic link. Obesity Rev. 2003;4(4):187-94. DOI: https://doi.org/10.1046/j.1467-789X.2003.00117.x

Stender S, Dyerberg J, Astrup A. Fast food: unfriendly and unhealthy. Int J Obesity. 2007;31(6):887-90. DOI: https://doi.org/10.1038/sj.ijo.0803616

Rosenheck R. Fast food consumption and increased caloric intake: a systematic review of a trajectory towards weight gain and obesity risk. Obesity Rev. 2008;9(6):535-47. DOI: https://doi.org/10.1111/j.1467-789X.2008.00477.x

Eleazu CO. The concept of low glycemic index and glycemic load foods as panacea for type 2 diabetes mellitus; prospects, challenges and solutions. African Health Sci. 2016;16(2):468-79. DOI: https://doi.org/10.4314/ahs.v16i2.15

Suissa K, Benedetti A, Henderson M, Gray-Donald K, Paradis G. Effects of dietary glycemic index and load on children's cardiovascular risk factors. Annals Epidemiol. 2019;40:1-7.e3. DOI: https://doi.org/10.1016/j.annepidem.2019.10.005

Castro-Quezada I, Núñez-Ortega PE, Flores-Guillén E, García-Miranda R, Irecta-Nájera CA, Solís-Hernández R, et al. Glycemic Index, Glycemic Load and Dyslipidemia in Adolescents from Chiapas, Mexico. Nutrients. 2024;16(10). DOI: https://doi.org/10.3390/nu16101483

Denova-Gutiérrez E, Huitrón-Bravo G, Talavera JO, Castañón S, Gallegos-Carrillo K, Flores Y, et al. Dietary glycemic index, dietary glycemic load, blood lipids, and coronary heart disease. J Nutr Metab. 2010;2010. DOI: https://doi.org/10.1155/2010/170680

Ludwig DS. The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. J AM Med Assoc. 2002;287(18):2414-23. DOI: https://doi.org/10.1001/jama.287.18.2414

Chiu CJ, Taylor A. Dietary hyperglycemia, glycemic index and metabolic retinal diseases. Progress Retinal Eye Res. 2011;30(1):18-53. DOI: https://doi.org/10.1016/j.preteyeres.2010.09.001

Mathews MJ, Liebenberg L, Mathews EH. How do high glycemic load diets influence coronary heart disease? Nutr Metab. 2015;12(1):6. DOI: https://doi.org/10.1186/s12986-015-0001-x

Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Saturated fatty acids and risk of coronary heart disease: modulation by replacement nutrients. Curr Atheroscler Rep. 2010;12(6):384-90. DOI: https://doi.org/10.1007/s11883-010-0131-6

Magriplis E, Marakis G, Kotopoulou S, Naska A, Michas G, Micha R, et al. Trans fatty acid intake increases likelihood of dyslipidemia especially among individuals with higher saturated fat consumption. Rev Cardiovasc Med. 2022;23(4):130. DOI: https://doi.org/10.31083/j.rcm2304130

Barnes TL, French SA, Mitchell NR, Wolfson J. Fast-food consumption, diet quality and body weight: cross-sectional and prospective associations in a community sample of working adults. Public Health Nutr. 2016;19(5):885-92. DOI: https://doi.org/10.1017/S1368980015001871

Fu L, Zhang G, Qian S, Zhang Q, Tan M. Associations between dietary fiber intake and cardiovascular risk factors: An umbrella review of meta-analyses of randomized controlled trials. Front Nutr. 2022;9:972399. DOI: https://doi.org/10.3389/fnut.2022.972399

Cicero AFG, Colletti A, Bajraktari G, Descamps O, Djuric DM, Ezhov M, et al. Lipid-lowering nutraceuticals in clinical practice: position paper from an International Lipid Expert Panel. Nutr Rev. 2017;75(9):731-67. DOI: https://doi.org/10.1093/nutrit/nux047

Gunness P, Gidley MJ. Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Function. 2010;1(2):149-55. DOI: https://doi.org/10.1039/c0fo00080a

Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocrine Rev. 2015;36(6):E1-150. DOI: https://doi.org/10.1210/er.2015-1010

Golestanzadeh M, Riahi R, Kelishadi R. Association of exposure to phthalates with cardiometabolic risk factors in children and adolescents: a systematic review and meta-analysis. Environ Sci Pollution Res Int. 2019;26(35):35670-86. DOI: https://doi.org/10.1007/s11356-019-06589-7

Wang B, Wang S, Zhao Z, Chen Y, Xu Y, Li M, et al. Bisphenol A exposure in relation to altered lipid profile and dyslipidemia among Chinese adults: A repeated measures study. Environ Res. 2020;184:109382. DOI: https://doi.org/10.1016/j.envres.2020.109382

Sarion C, Codină GG, Dabija A. Acrylamide in Bakery Products: A Review on Health Risks, Legal Regulations and Strategies to Reduce Its Formation. Int J Environ Res Public Health. 2021;18(8). DOI: https://doi.org/10.3390/ijerph18084332

Mérida DM, Rey-García J, Moreno-Franco B, Guallar-Castillón P. Acrylamide Exposure and Cardiovascular Risk: A Systematic Review. Nutrition. 2024;16(24). DOI: https://doi.org/10.3390/nu16244279

Hosseini-Esfahani F, Ildarabadi A, Daei S, Koochakpoor G, Nematollahi A, Mirmiran P, et al. Acrylamide Intake and Metabolic Syndrome Risk: The Tehran Lipid and Glucose Study. Food Sci Nutr. 2025;13(4):e70038. DOI: https://doi.org/10.1002/fsn3.70038

Wang B, Wang X, Yu L, Liu W, Song J, Fan L, et al. Acrylamide exposure increases cardiovascular risk of general adult population probably by inducing oxidative stress, inflammation, and TGF-β1: A prospective cohort study. Environ Int. 2022;164:107261. DOI: https://doi.org/10.1016/j.envint.2022.107261

Liang J, Xu C, Liu Q, Weng Z, Zhang X, Xu J, et al. Total cholesterol: a potential mediator of the association between exposure to acrylamide and hypertension risk in adolescent females. Environ Sci Pollution Res Int. 2022;29(25):38425-34. DOI: https://doi.org/10.1007/s11356-021-18342-0

Wan X, Zhu F, Zhuang P, Liu X, Zhang L, Jia W, et al. Associations of Hemoglobin Adducts of Acrylamide and Glycidamide with Prevalent Metabolic Syndrome in a Nationwide Population-Based Study. J Agri Food Chem. 2022;70(28):8755-66. DOI: https://doi.org/10.1021/acs.jafc.2c03016

Sharma C, Kaur A, Thind SS, Singh B, Raina S. Advanced glycation End-products (AGEs): an emerging concern for processed food industries. J Food Sci Technol. 2015;52(12):7561-76. DOI: https://doi.org/10.1007/s13197-015-1851-y

Stirban A, Gawlowski T, Roden M. Vascular effects of advanced glycation endproducts: Clinical effects and molecular mechanisms. Mol Metab. 2014;3(2):94-108. DOI: https://doi.org/10.1016/j.molmet.2013.11.006

Chang JB, Chu NF, Syu JT, Hsieh AT, Hung YR. Advanced glycation end products (AGEs) in relation to atherosclerotic lipid profiles in middle-aged and elderly diabetic patients. Lipids Health Dis. 2011;10:228. DOI: https://doi.org/10.1186/1476-511X-10-228

Vekic J, Vujcic S, Bufan B, Bojanin D, Al-Hashmi K, Al-Rasadi K, et al. The Role of Advanced Glycation End Products on Dyslipidemia. Metabolism. 2023;13(1). DOI: https://doi.org/10.3390/metabo13010077

Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, et al. Risks for public health related to the presence of furan and methylfurans in food. EFSA J Eu Food Safety Authority. 2017;15(10):e05005. DOI: https://doi.org/10.2903/j.efsa.2017.5005

Seok YJ, Her JY, Kim YG, Kim MY, Jeong SY, Kim MK, et al. Furan in Thermally Processed Foods - A Review. Toxicol Res. 2015;31(3):241-53. DOI: https://doi.org/10.5487/TR.2015.31.3.241

Rehman H, Jahan S, Ullah I, Winberg S. Toxicological effects of furan on the reproductive system of male rats: An “in vitro” and “in vivo"-based endocrinological and spermatogonial study. Chemosphere. 2019;230:327-36. DOI: https://doi.org/10.1016/j.chemosphere.2019.05.063

Selmanoğlu G, Karacaoğlu E, Kiliç A, Koçkaya EA, Akay MT. Toxicity of food contaminant furan on liver and kidney of growing male rats. Environ Toxicol. 2012;27(10):613-22. DOI: https://doi.org/10.1002/tox.20673

Adeyeye SAO, Sivapriya T, Sankarganesh P. Formation and mitigation of heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) in high temperature processed meat products: a review. Discover Food. 2025;5(1):258. DOI: https://doi.org/10.1007/s44187-025-00391-w

Walls KM, Joh JY, Hong KU, Hein DW. Heterocyclic Amines Disrupt Lipid Homeostasis in Cryopreserved Human Hepatocytes. Cardiovasc Toxicol. 2024;24(8):747-56. DOI: https://doi.org/10.1007/s12012-024-09874-1

Melo GLR, Santo RE, Mas Clavel E, Bosque Prous M, Koehler K, Vidal-Alaball J, et al. Digital dietary interventions for healthy adolescents: A systematic review of behavior change techniques, engagement strategies, and adherence. Clin Nutr. 2025;45:176-92. DOI: https://doi.org/10.1016/j.clnu.2025.01.012

Tandon PS, Zhou C, Chan NL, Lozano P, Couch SC, Glanz K, et al. The impact of menu labeling on fast-food purchases for children and parents. Am J Prevent Med. 2011;41(4):434-8. DOI: https://doi.org/10.1016/j.amepre.2011.06.033

Taillie LS, Busey E, Stoltze FM, Dillman Carpentier FR. Governmental policies to reduce unhealthy food marketing to children. Nutr Rev. 2019;77(11):787-816. DOI: https://doi.org/10.1093/nutrit/nuz021

Pineda E, Poelman MP, Aaspõllu A, Bica M, Bouzas C, Carrano E, et al. Policy implementation and priorities to create healthy food environments using the Healthy Food Environment Policy Index (Food-EPI): A pooled level analysis across eleven European countries. Lancet Regional Health Eu. 2022;23:100522. DOI: https://doi.org/10.1016/j.lanepe.2022.100522

Ziso D, Chun OK, Puglisi MJ. Increasing Access to Healthy Foods through Improving Food Environment: A Review of Mixed Methods Intervention Studies with Residents of Low-Income Communities. Nutrients. 2022;14(11). DOI: https://doi.org/10.3390/nu14112278

Kumar S, Das A, Kasala K, Ridoutt BG. Shaping food environments to support sustainable healthy diets in low and middle-income countries. Front Sustainable Food Systems. 2023;7. DOI: https://doi.org/10.3389/fsufs.2023.1120757

Jiménez-Peláez CC, Fernández-Aparicio Á, Montero-Alonso MA, González-Jiménez E. Effect of Dietary and Physical Activity Interventions Combined with Psychological and Behavioral Strategies on Preventing Metabolic Syndrome in Adolescents with Obesity: A Meta-Analysis of Clinical Trials. Nutrients. 2025;17(13). DOI: https://doi.org/10.3390/nu17132051

Downloads

Published

2025-12-15

How to Cite

Alsoliman, M. A., Alotaibi, K. F., & Alkhulaifi, A. S. (2025). Correlation between fast food consumption and lipid profiles. International Journal Of Community Medicine And Public Health, 13(1), 443–448. https://doi.org/10.18203/2394-6040.ijcmph20254097

Issue

Section

Review Articles