Growth-related changes in the upper and lower jaw: clinical implications for treatment timing
DOI:
https://doi.org/10.18203/2394-6040.ijcmph20253721Keywords:
Craniofacial growth, Orthodontic treatment, Maxillary growth, OcclusionAbstract
Jaw growth is a complex, multifactorial process involving cellular remodeling through buildup and breakdown. It fundamentally shapes facial structure and occlusal interactions. The maxilla and mandible exhibit different growth patterns, where the maxilla completes its growth earlier than the mandible. These differential growth rates, influenced by genetic and environmental factors, have profound implications for the development of malocclusions. Most importantly, the optimal timing of orthodontic treatment, especially during pubertal growth spurts, is critical for enhancing therapeutic benefits and achieving stable, long-lasting outcomes. Understanding these age-specific changes and the interplay of various contributing factors is central to effective orthodontic intervention. This review aims to explore the key growth-related changes that occur in the upper and lower jaw from early development through adolescence. Furthermore, it seeks to discuss the clinical implications of these changes, particularly concerning the optimal timing of various orthodontic interventions. Thus, provide an updated, thorough understanding of the interplay between natural growth and treatment efficacy.
Metrics
References
Proffit WR, Fields HW, Sarver DM. Contemporary orthodontics. Elsevier Health Sciences. 2006.
Liang C, Profico A, Buzi C. Normal human craniofacial growth and development from 0 to 4 years. Scientific Reports. 2023;13(1):9641.
Niemann K, Lazarus L, Rennie CO. Developmental changes of the facial skeleton from birth to 18 years within a South African cohort (A computed tomography study). J Forensic and Legal Med. 2021;83:102243. DOI: https://doi.org/10.1016/j.jflm.2021.102243
Laowansiri U, Behrents RG, Araujo E, Oliver DR, Buschang PH. Maxillary growth and maturation during infancy and early childhood. Angle Orthod. 2013;83(4):563-71.
Barbhuiya S, Das BB. Life Cycle Assessment of construction materials: Methodologies, applications and future directions for sustainable decision-making. Case Studies in Construction Materials. 2023;19:e02326. DOI: https://doi.org/10.1016/j.cscm.2023.e02326
Franchi L, Nieri M, McNamara JA, Giuntini V. Predicting mandibular growth based on CVM stage and gender and with chronological age as a curvilinear variable. Orthodont Craniofac Res. 2021;24(3):414-20. DOI: https://doi.org/10.1111/ocr.12457
Charreau JL. Distal mandibular position treatment in adolescence: use of twin blocks. MOJ Orthoped Rheumatol. 2023;15(5):172-80. DOI: https://doi.org/10.15406/mojor.2023.15.00641
Albert AM, Payne AL, Brady SM, Wrighte C. Craniofacial changes in children-birth to late adolescence. ARC J Forensic Sci. 2019;4(1):1-19.
Liang C, Profico A, Buzi C. Normal human craniofacial growth and development from 0 to 4 years. Scientific Reports. 2023;13(1):9641. DOI: https://doi.org/10.1038/s41598-023-36646-8
Laowansiri U, Behrents RG, Araujo E, Oliver DR, Buschang PH. Maxillary growth and maturation during infancy and early childhood. Angle Orthodontist. 2013;83(4):563-71. DOI: https://doi.org/10.2319/071312-580.1
Backes EP, Bonnie RJ, editors. The promise of adolescence: Realizing opportunity for all youth. 2019. DOI: https://doi.org/10.17226/25388
Fan Y, Han B, Zhang Y. Natural reference structures for three-dimensional maxillary regional superimposition in growing patients. BMC Oral Health. 2023;23(1):655. DOI: https://doi.org/10.1186/s12903-023-03367-3
Gupta A. Tracing the transformation: A comprehensive review of craniofacial growth from childhood to adulthood (5-25 Years). International J Appl Dental Sci. 2025;11(3):273-6.
Mizoguchi I, Toriya N, Nakao Y. Growth of the mandible and biological characteristics of the mandibular condylar cartilage. Japan Dental Sci Rev. 2013;49(4):139-50. DOI: https://doi.org/10.1016/j.jdsr.2013.07.004
Esfehani M, Tofangchiha M, Poorsayyah N. Relationship between posterior permanent dentition pattern and radiographic changes of the mandibular condyle. Methods Prot. 2022;5(6):97. DOI: https://doi.org/10.3390/mps5060097
Manabe A, Ishida T, Kanda E, Ono T. Evaluation of maxillary and mandibular growth patterns with cephalometric analysis based on cervical vertebral maturation: A Japanese cross-sectional study. Plos One. 2022;17(4):265272. DOI: https://doi.org/10.1371/journal.pone.0265272
Al-Obaidi S, Papageorgiou SN, Saade M. Influence of genetic and environmental factors on transverse growth. Eur J Orthod. 2025;47(2):76. DOI: https://doi.org/10.1093/ejo/cjaf003
Gupta A. Tracing the transformation: A comprehensive review of craniofacial growth from childhood to adulthood (5-25 Years). Int J Appl Dental Sci. 2025;11:273-6. DOI: https://doi.org/10.22271/oral.2025.v11.i3d.2217
Hartsfield JK, Jr., Jacob GJ, Morford LA. Heredity, Genetics and Orthodontics-How Much Has This Research Really Helped. Semin Orthod. 2017;23(4):336-47. DOI: https://doi.org/10.1053/j.sodo.2017.07.003
Tanikawa C, Kurata M, Tanizaki N, et al. Influence of the nutritional status on facial morphology in young Japanese women. Sci Rep. 2022;12(1):18557. DOI: https://doi.org/10.1038/s41598-022-21919-5
21. .
Parikh V, Gonchar M, Gibson TL, Grayson BH, Cutting CB, Shetye PR. One-year stability of lefort i advancement in patients with complete cleft lip and palate using a standardized clinical and surgical protocol. J Craniofac Surg. 2021;32(7):2491-5. DOI: https://doi.org/10.1097/SCS.0000000000007956
Lin L, Zhao T, Qin D, Hua F, He H. The impact of mouth breathing on dentofacial development: A concise review. Front Public Health. 2022;10:929165. DOI: https://doi.org/10.3389/fpubh.2022.929165
Hamidaddin MA. Optimal Treatment Timing in Orthodontics: A Scoping Review. Eur J Dent. 2024;18(1):86-96. DOI: https://doi.org/10.1055/s-0043-1768974
Fleming PS. Timing orthodontic treatment: early or late. Aust Dent J. 2017;62(1):11-9. DOI: https://doi.org/10.1111/adj.12474
Naderi Y, Karami E, Chamani G, Amizadeh M, Rad M, Shabani M. Temporomandibular treatments are significantly efficient in improving otologic symptoms. BMC Oral Health. 2023;23(1):913. DOI: https://doi.org/10.1186/s12903-023-03627-2
Hezenci Y, Bulut M. Correlation of skeletal development and midpalatal suture maturation. Eur J Med Res. 2024;29(1):461. DOI: https://doi.org/10.1186/s40001-024-02058-1
Baccetti T, Franchi L, McNamara JA. The cervical vertebral maturation (CVM) method for the assessment of optimal treatment timing in dentofacial orthopedics. Sem Orthod. 2005;2:986. DOI: https://doi.org/10.1053/j.sodo.2005.04.005
Zhang Y, Shu S, Gu Q. Cervical vertebral maturation (CVM) stage as a supplementary indicator for the assessment of peak height velocity (PHV) in adolescent idiopathic scoliosis (AIS). Quantitative Imag Med Surg. 2019;10(1):96-105. DOI: https://doi.org/10.21037/qims.2019.11.07
Ferrillo M, Curci C, Roccuzzo A, Migliario M, Invernizzi M, de Sire A. Reliability of cervical vertebral maturation compared to hand-wrist for skeletal maturation assessment in growing subjects: A systematic review. J Back Musculoskel Rehabil. 2021;34(6):925-36. DOI: https://doi.org/10.3233/BMR-210003
Alhammadi MS, Halboub E, Fayed MS, Labib A, El-Saaidi C. Global distribution of malocclusion traits: A systematic review. Dental Press J Orthodont. 2018;23(6):40-1. DOI: https://doi.org/10.1590/2177-6709.23.6.40.e1-10.onl
Hägg U, Wong RWK. Strategies for Treatment of Adolescent Patients with Class II Malocclusions. In: Nanda R, ed. Esthetics and Biomechanics in Orthodontics (Second Edition). St. Louis: W.B. Saunders. 2015:197-204. DOI: https://doi.org/10.1016/B978-1-4557-5085-6.00011-4
Silva LF, Thomaz EB, Freitas HV, Pereira AL, Ribeiro CC, Alves CM. Impact of malocclusion on the quality of life of Brazilian adolescents: a population-based study. PLoS One. 2016;11(9):162715. DOI: https://doi.org/10.1371/journal.pone.0162715
Wang J, Wang Y, Yang Y. Clinical effects of maxillary protraction in different stages of dentition in skeletal class III children: A systematic review and meta-analysis. Orthodon Craniofac Res. 2022;25(4):549-61. DOI: https://doi.org/10.1111/ocr.12569
Nucci L, Costanzo C, Carfora M, d'Apuzzo F, Franchi L, Perillo L. Dentoskeletal effects of early class III treatment protocol based on timing of intervention in children. Prog Orthod. 2021;22(1):49. DOI: https://doi.org/10.1186/s40510-021-00392-2
Rafiuddin S, Biswas S, Prabhu SS. Iatrogenic damage to the periodontium caused by orthodontic treatment procedures: an overview. Open Dentist J. 2015;9:228-34. DOI: https://doi.org/10.2174/1874210601509010228
Klop N, Schreurs R, De Jong G. An open-source, three-dimensional growth model of the mandible. Comp Biol Med. 2024;175:108455. DOI: https://doi.org/10.1016/j.compbiomed.2024.108455
Lyros I, Vastardis H, Tsolakis IA, Kotantoula G, Lykogeorgos T, Tsolakis AI. Growth Prediction in Orthodontics: ASystematic Review of Past Methods up to Artificial Intelligence. Children (Basel). 2025;12(8):45. DOI: https://doi.org/10.3390/children12081023
Derwich M, Minch L, Mitus-Kenig M, Zoltowska A, Pawlowska E. Personalized Orthodontics: From the Sagittal Position of Lower Incisors to the Facial Profile Esthetics. J Pers Med. 2021;11(8):857. DOI: https://doi.org/10.3390/jpm11080692
Liu Z, Luo X, Xu R. Interaction between immuno-stem dual lineages in jaw bone formation and injury repair. Front Cell Dev Biol. 2024;12:1359295. DOI: https://doi.org/10.3389/fcell.2024.1359295