Association between elevated lipoprotein(a) levels and cardiovascular risk

Authors

  • A. Karim Abushmaies Advanced Veins and Vascular Management, Hillsdale, Michigan, USA
  • Muhammad Sufyan Government College, University Faisalabad, Pakistan

DOI:

https://doi.org/10.18203/2394-6040.ijcmph20253757

Keywords:

Lipoprotein(a), Cardiovascular disease, Myocardial infarction, Ischemic stroke, Meta-analysis, PCSK9 inhibitors, Mendelian randomization, Cardiovascular mortality

Abstract

Lipoprotein(a) [Lp(a)] is a genetically determined lipoprotein particle implicated in atherosclerotic cardiovascular disease (ASCVD). Elevated Lp(a) levels have been recognized as a residual cardiovascular risk factor independent of low-density lipoprotein cholesterol. However, prior studies have reported inconsistent results due to differences in measurement techniques, population diversity, and confounding factors. This meta-analysis evaluated the association between elevated Lp(a) levels and cardiovascular risk across observational and genetic studies and quantified the impact of Lp(a)-lowering interventions on clinical outcomes. A comprehensive literature search was conducted in PubMed, EMBASE, Web of Science, and the Cochrane Library up to October 20, 2025, following PRISMA 2020 guidelines. Studies assessing relationships between Lp(a) and cardiovascular outcomes were included, and data were analyzed using random-effects models in R studio. Heterogeneity was measured using the I² statistic, and risk of bias was evaluated using the Newcastle-Ottawa scale (NOS) and ROBINS-I tool. Twenty-five studies encompassing 95,206 participants were included. Elevated Lp(a) levels were significantly associated with increased risk of major adverse cardiovascular events (MACE) (OR=0.81; 95% CI: 0.68-0.98; I²=54.9%), myocardial infarction (OR=0.86; 95% CI: 0.75-0.99), ischemic stroke (OR=0.87; 95% CI: 0.76-0.99), and cardiovascular mortality (OR=0.89; 95% CI: 0.87-0.91). PCSK9 inhibitors reduced Lp(a) by a pooled mean difference of -15.58 mg/dL, and anti-inflammatory therapies by -11.21 mg/dl. Elevated Lp(a) is independently associated with cardiovascular risk, underscoring its importance in prevention strategies.

Metrics

Metrics Loading ...

References

Matthews E, Biernacki P. Lipoprotein(a): Screening and care of the high-risk cardiovascular disease patient. J Nurse Pract. 2025;21(1):105227. DOI: https://doi.org/10.1016/j.nurpra.2024.105227

Avogaro P. Apolipoproteins, the lipid hypothesis, and ischemic heart disease. In Behavioral Epidemiology and Disease Prevention, (Springer US). 1985;42(8):57-65. DOI: https://doi.org/10.1007/978-1-4684-7929-4_4

Gulayin PE, Lozada A, Schreier L, Gutierrez L, López G, Poggio R, et al. Elevated Lipoprotein(a) prevalence and association with family history of premature cardiovascular disease in general population with moderate cardiovascular risk and increased LDL cholesterol. Int J Cardiol Heart Vasc. 2022;42:101100. DOI: https://doi.org/10.1016/j.ijcha.2022.101100

Afshar M, Rong J, Zhan Y, Chen HY, Engert J, Sniderman A, et al. Risks of incident cardiovascular disease associated with concomitant elevations in lipoprotein(a) and low-density lipoprotein cholesterol: The Framingham heart study. J Am Coll Cardiol. 2019;73(18):1717. DOI: https://doi.org/10.1016/S0735-1097(19)32323-X

Bostom AG. Elevated plasma lipoprotein(a) and coronary heart disease in men aged 55 years and younger. JAMA. 1996;276(7):544. DOI: https://doi.org/10.1001/jama.1996.03540070040028

Sharma S, Merchant J, Fleming SE. Lp(a)-cholesterol is associated with HDL-cholesterol in overweight and obese African American children and is not an independent risk factor for CVD. Cardiovasc Diabetol. 2012;11:10. DOI: https://doi.org/10.1186/1475-2840-11-10

Ettinger WH Jr, Verdery RB, Wahl PW, Fried LP. High density lipoprotein cholesterol subfractions in older people. J Gerontol. 1994;49(3):M116-22. DOI: https://doi.org/10.1093/geronj/49.3.M116

Shoar S, Ikram W, Shah AA, Farooq N, Gouni S, Khavandi S, et al. Non-high-density lipoprotein (non-HDL) cholesterol in adolescence as a predictor of atherosclerotic cardiovascular diseases in adulthood. Rev Cardiovasc Med. 2021;22(2):295-9. DOI: https://doi.org/10.31083/j.rcm2202037

Nguyen C, Charles MA. Atherogenic lipid phenotype and lipoprotein (a) in diabetes. Endocrinologist. 2002;12:243-59. DOI: https://doi.org/10.1097/00019616-200205000-00011

Hirano T. Pathophysiology of diabetic dyslipidemia. J Atheroscler Thromb. 2018;25(9):771-82. DOI: https://doi.org/10.5551/jat.RV17023

Gabay C, Burmester GR, Strand V, Msihid J, Zilberstein M, Kimura T, et al. Sarilumab and adalimumab differential effects on bone remodelling and cardiovascular risk biomarkers, and predictions of treatment outcomes. Arthritis Res Ther. 2020;22(1):70. DOI: https://doi.org/10.1186/s13075-020-02163-6

Rysz-Gorzynska M, Gluba-Brzozka A, Banach M. High-density lipoprotein and low-density lipoprotein subfractions in patients with chronic kidney disease. Curr Vasc Pharmacol. 2017;15(2):144-51. DOI: https://doi.org/10.2174/1570161114666161003093032

Albers JJ, Slee A, Fleg JL, O'Brien KD, Marcovina SM. Relationship of baseline HDL subclasses, small dense LDL and LDL triglyceride to cardiovascular events in the AIM-HIGH clinical trial. Atherosclerosis. 2016;251:454-9. DOI: https://doi.org/10.1016/j.atherosclerosis.2016.06.019

Atger VR, Giral P, Simon A, Cambillau M, Levenson J, Gariepy J, et al. High-density lipoprotein subfractions as markers of early atherosclerosis. Am J Cardiol. 1995;75:127-31. DOI: https://doi.org/10.1016/S0002-9149(00)80060-0

O'Donoghue ML, Fazio S, Giugliano RP, Stroes ESG, Kanevsky E, Gouni-Berthold I, et al. Lipoprotein(a), PCSK9 Inhibition, and Cardiovascular Risk. Circulation. 2019;139:1483-92. DOI: https://doi.org/10.1161/CIRCULATIONAHA.118.037184

Hao Y, Yang YL, Wang YC, Li J. Effect of the Early Application of Evolocumab on Blood Lipid Profile and Cardiovascular Prognosis in Patients with Extremely High-Risk Acute Coronary Syndrome. Int Heart J. 2022;63:669-77. DOI: https://doi.org/10.1536/ihj.22-052

Mohammadnia N, van Broekhoven A, Bax WA, Eikelboom JW, Mosterd A, Fiolet ATL, et al. Interleukin-6 modifies Lipoprotein(a) and oxidized phospholipids associated cardiovascular disease risk in a secondary prevention cohort. Atherosclerosis. 2025;405:119211. DOI: https://doi.org/10.1016/j.atherosclerosis.2025.119211

Bittner VA, Schwartz GG, Bhatt DL, Chua T, De Silva HA, Diaz R, et al. Alirocumab and cardiovascular outcomes according to sex and lipoprotein(a) after acute coronary syndrome: a report from the ODYSSEY OUTCOMES study. J Clin Lipidol. 2024;18:e548-61. DOI: https://doi.org/10.1016/j.jacl.2024.04.122

Schwartz GG, Steg PG, Szarek M, Bittner VA, Diaz R, Goodman SG, et al. Peripheral artery disease and venous thromboembolic events after Acute Coronary Syndrome: Role of lipoprotein(a) and modification by alirocumab: Prespecified analysis of the Odyssey outcomes randomized clinical trial. Circulation. 2020;141(20):1608-17. DOI: https://doi.org/10.1161/CIRCULATIONAHA.120.046524

Nuotio P, Lankinen MA, Meuronen T, de Mello VD, Sallinen T, Virtanen KA, et al. Dietary n-3 alpha-linolenic and n-6 linoleic acids modestly lower serum lipoprotein(a) concentration but differentially influence other atherogenic lipoprotein traits: A randomized trial. Atherosclerosis. 2024;395:117562. DOI: https://doi.org/10.1016/j.atherosclerosis.2024.117562

Nam CW, Kim DS, Li J, Baccara-Dinet MT, Li I, Kim JH, et al. Efficacy and safety of alirocumab in Korean patients with hypercholesterolemia and high cardiovascular risk: subanalysis of the ODYSSEY-KT study. Kor J Intern Med. 2024;34(6):1252-62. DOI: https://doi.org/10.3904/kjim.2018.133

Ljungberg J, Holmgren A, Bergdahl IA, Hultdin J, Norberg M, Näslund U, et al. Lipoprotein(a) and the apolipoprotein B/A1 ratio independently associate with surgery for aortic stenosis only in patients with concomitant coronary artery disease. J Am Heart Assoc. 2017;6(12):e007160. DOI: https://doi.org/10.1161/JAHA.117.007160

Teramoto T, Daida H, Ikewaki K, Arai H, Maeda Y, Nakagomi M, et al. Lipid-modifying efficacy and tolerability of anacetrapib added to ongoing statin therapy in Japanese patients with dyslipidemia. Atherosclerosis. 2017;261:69-77. DOI: https://doi.org/10.1016/j.atherosclerosis.2017.03.009

Yang X, Alexander VJ, Xia S, Tsimikas S. Effect of olezarsen on lipoprotein-associated ApoC-III levels in patients with familial chylomicronemia syndrome. Atherosclerosis. 2025;408:120462. DOI: https://doi.org/10.1016/j.atherosclerosis.2025.120462

Sullivan AE, Huang S, Kundu S, Thomas VE, Clair DG. Aday AW, et al. Association of lipoprotein(a) with major adverse limb events and all-cause mortality following revascularization for chronic limb-threatening ischemia: A substudy of the BEST-CLI trial. J Am Heart Assoc. 2025;14:e041177. DOI: https://doi.org/10.1161/JAHA.125.041177

Boccara F, Kumar PN, Caramelli B, Calmy A, López JAG, Bray S, et al. Evolocumab in HIV-infected patients with dyslipidemia: Primary results of the randomized, double-blind BEIJERINCK study. J Am Coll. Cardiol. 2020;75:2570-84. DOI: https://doi.org/10.1016/S0735-1097(20)32459-1

Colhoun HM, Leiter LA, Müller-Wieland D, Cariou B, Ray KK, Tinahones FJ, et al. Effect of alirocumab on individuals with type 2 diabetes, high triglycerides, and low high-density lipoprotein cholesterol. Cardiovasc. Diabetol. 2020;19(1):14. DOI: https://doi.org/10.1186/s12933-020-0991-1

McInnes IB, Thompson L, Giles JT, Bathon JM, Salmon JE, Beaulieu AD, et al. Effect of interleukin-6 receptor blockade on surrogates of vascular risk in rheumatoid arthritis: MEASURE, a randomised, placebo-controlled study. Ann Rheum Dis. 2015;74:694-702. DOI: https://doi.org/10.1136/annrheumdis-2013-204345

Farrah TE, Anand A, Gallacher PJ, Kimmitt R, Carter E, Dear JW, et al. Endothelin receptor antagonism improves lipid profiles and lowers PCSK9 (proprotein convertase subtilisin/Kexin type 9) in patients with chronic kidney disease. Hypertension. 2019;74:323-30. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.119.12919

Koh KK, Nam CW, Chao TH, Liu ME, Wu CJ, Kim DS, et al. A randomized trial evaluating the efficacy and safety of alirocumab in South Korea and Taiwan (ODYSSEY KT). J Clin Lipidol. 2018;12:162-72.e166. DOI: https://doi.org/10.1016/j.jacl.2017.09.007

Bays HE, Brinton EA, Triscari J, Chen E, Maccubbin D, MacLean AA, et al. Extended-release niacin/laropiprant significantly improves lipid levels in type 2 diabetes mellitus irrespective of baseline glycemic control. Vasc Health Risk Manag. 2015;11:165-72. DOI: https://doi.org/10.2147/VHRM.S70907

Adiels M, Chapman MJ, Robillard P, Krempf M, Laville M, Borén J. Niacin action in the atherogenic mixed dyslipidemia of metabolic syndrome: Insights from metabolic biomarker profiling and network analysis. J Clin Lipidol. 2018;12(3):810-21.e811. DOI: https://doi.org/10.1016/j.jacl.2018.03.083

Nicholls SJ, Ray KK, Ballantyne CM, Beacham LA, Miller DL, Ruotolo G, et al. Comparative effects of cholesteryl ester transfer protein inhibition, statin or ezetimibe on lipid factors: The ACCENTUATE trial. Atherosclerosis. 2017;261:12-8. DOI: https://doi.org/10.1016/j.atherosclerosis.2017.04.008

Schwartz GG, Gabriel Steg P, Bhatt DL, Bittner VA, Diaz R, Goodman SG, et al. Clinical Efficacy and Safety of Alirocumab After Acute Coronary Syndrome According to Achieved Level of Low-Density Lipoprotein Cholesterol: A Propensity Score-Matched Analysis of the ODYSSEY OUTCOMES Trial. Circulation. 2021;143(11):1109-22. DOI: https://doi.org/10.1161/CIRCULATIONAHA.120.049447

Stiekema LCA, Stroes ESG, Verweij SL, Kassahun H, Chen L, Wasserman SM, et al. Persistent arterial wall inflammation in patients with elevated lipoprotein(a) despite strong low-density lipoprotein cholesterol reduction by proprotein convertase subtilisin/kexin type 9 antibody treatment. Eur Heart J. 2019;40(33):2775-81. DOI: https://doi.org/10.1093/eurheartj/ehy862

Nakamura A, Kanazawa M, Kagaya Y, Kondo M, Sato K, Endo H, et al. Plasma kinetics of mature PCSK9, furin-cleaved PCSK9, and Lp(a) with or without administration of PCSK9 inhibitors in acute myocardial infarction. J Cardiol. 2020;76(4):395-401. DOI: https://doi.org/10.1016/j.jjcc.2020.04.006

Leiter LA, Teoh H, Kallend D, Wright RS, Landmesser U, Wijngaard PLJ, et al. Inclisiran Lowers LDL-C and PCSK9 Irrespective of Diabetes Status: The ORION-1 Randomized Clinical Trial. Diabetes Care. 2019;42(1):173-6. DOI: https://doi.org/10.2337/dc18-1491

Atallah M, Harb T, Nasrallah N, Jones SR, Gerstenblith G, Tsimikas S, et al. Oxidized phospholipid dynamics in the early post-infarction period: Effects of PCSK9 inhibition with evolocumab. Atherosclerosis. 2025;409:120469. DOI: https://doi.org/10.1016/j.atherosclerosis.2025.120469

Holmes DT, Schick BA, Humphries KH, Frohlich J. Lipoprotein(a) is an independent risk factor for cardiovascular disease in heterozygous familial hypercholesterolemia. Clin Chem. 2005;51(11):2067-73. DOI: https://doi.org/10.1373/clinchem.2005.055228

Sniderman AD, Williams K, Contois JH, Monroe HM, McQueen MJ, de Graaf J, et al. A meta-analysis of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B as markers of cardiovascular risk. Circ Cardiovasc Qual Outcomes. 2011;4(3):337-45. DOI: https://doi.org/10.1161/CIRCOUTCOMES.110.959247

Yokokawa H, Yasumura S, Tanno K, Ohsawa M, Onoda T, Itai K, et al. Serum low-density lipoprotein to high-density lipoprotein ratio as a predictor of future acute myocardial infarction among men in a 2.7-year cohort study of a Japanese northern rural population. J Atheroscler Thromb. 2011;18(2):89-98. DOI: https://doi.org/10.5551/jat.5215

Kaysen GA. Dyslipidemia in chronic kidney disease: Causes and consequences. Kidney Int. 2006;70:S55-8. DOI: https://doi.org/10.1038/sj.ki.5001979

Downloads

Published

2025-11-17

How to Cite

Abushmaies, A. K., & Sufyan, M. (2025). Association between elevated lipoprotein(a) levels and cardiovascular risk. International Journal Of Community Medicine And Public Health, 12(12), 5759–5774. https://doi.org/10.18203/2394-6040.ijcmph20253757

Issue

Section

Meta-Analysis