Bioactive and self-healing smart materials in pulp therapy
DOI:
https://doi.org/10.18203/2394-6040.ijcmph20253720Keywords:
Pulp therapy, Smart materials, Self-healing systems, Bioactive materials, Reparative dentin, Stimuli-responsive formulationsAbstract
The efficiency of pulp therapy has been greatly impacted by the development of materials used in endodontic and restorative dentistry. Biologically based regenerative pulp treatment has entered a new era, specifically with the advent of smart materials, which are characterized by their capacity to react actively to environmental stimuli. Along with sealing and protecting the pulp, these materials' bioactivity and, in certain situations, self-healing properties enable them to aid in tissue repair, lower inflammation, and promote the regeneration of the dentin-pulp complex. Calcium silicate-based sealers, Mineral Trioxide Aggregate (MTA), and bioactive materials like biodentine encourage biomineralization and the formation of reparative dentin, while self-healing systems like microcapsule-based composites can independently restore structural integrity after microcracks. The third frontier in smart dental materials is represented by stimuli-responsive formulations, which release therapeutic agents under controlled conditions in response to variations in pH, moisture content, or bacterial activity. Through an analysis of their mechanisms of action, clinical results, advancements in material science, and potential applications, this review seeks to investigate the role of bioactive and self-healing smart materials in pulp therapy. To educate researchers and clinicians about the new technologies that are changing pulp preservation and regeneration techniques in minimally invasive dentistry, the objective is to present an up-to-date summary of available data.
Metrics
References
Duncan HF. Present status and future directions—Vital pulp treatment and pulp preservation strategies. International Endodontic Journal. 2022;55:497-511. DOI: https://doi.org/10.1111/iej.13688
Rajasekar V, Abdalla MM, Huang M, Neelakantan P, Yiu CKY. Next-Generation Biomaterials for Vital Pulp Therapy: Exploring Biological Properties and Dentin Regeneration Mechanisms. Bioengineering. 2025;12(3):248. DOI: https://doi.org/10.3390/bioengineering12030248
Abdelaziz AA, Elgohary MS, Atiya MA, Saleh HA, Elgohary Sr MS. A Comparative Study of Different Traditional and Bioactive Indirect Pulp Lining Materials on Post-Operative Dentin Hypersensitivity: An In Vivo Study. Cureus. 2025;17(1). DOI: https://doi.org/10.7759/cureus.76984
Ali AS, El-Bioumy SY, Mostafa MH. Evaluation of different indirect pulp treatment materials used in deep carious primary molars. Al-Azhar Dental Journal for Girls. 2023;10(2):495-502. DOI: https://doi.org/10.58675/2974-4164.1488
Alhusainy A. Long-Term Outcomes of Vital Pulp Therapy in Deep Carious Lesions Using Bioceramic Materials. Journal of pharmacy & bioallied sciences. 2024;16(Suppl 4):S3721-3. DOI: https://doi.org/10.4103/jpbs.jpbs_1187_24
El Saied NT, Awad SM, Alhosainy AY. Evaluation of dirEct pulp capping in carious primary molars: a 12-month randomizEd controllEd clinical trial. Journal of Stomatology. 2024;77(4):253-63. DOI: https://doi.org/10.5114/jos.2024.145755
Widbiller M, Galler KM. Engineering the Future of Dental Health: Exploring Molecular Advancements in Dental Pulp Regeneration. International Journal of Molecular Sciences. 2023;24(14):11453. DOI: https://doi.org/10.3390/ijms241411453
Dal-Fabbro R, Swanson WB, Capalbo LC, Sasaki H, Bottino MC. Next-generation biomaterials for dental pulp tissue immunomodulation. Dental materials : official publication of the Academy of Dental Materials. 2023;39(4):333-49. DOI: https://doi.org/10.1016/j.dental.2023.03.013
Ballal NV, Duncan HF, Wiedemeier DB, et al. MMP-9 Levels and NaOCl Lavage in Randomized Trial on Direct Pulp Capping. J Dent Res. 2022;101(4):414-9. DOI: https://doi.org/10.1177/00220345211046874
Chen Y, Zhang F, Fu Q, Liu Y, Wang Z, Qi N. In vitro proliferation and osteogenic differentiation of human dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/ hydroxyapatite hydrogel. Journal of biomaterials applications. 2016;31(3):317-27. DOI: https://doi.org/10.1177/0885328216661566
Ducret M, Montembault A, Josse J. Design and characterization of a chitosan-enriched fibrin hydrogel for human dental pulp regeneration. Dental materials : official publication of the Academy of Dental Materials. 2019;35(4):523-33. DOI: https://doi.org/10.1016/j.dental.2019.01.018
Atila D, Kumaravel V. Advances in antimicrobial hydrogels for dental tissue engineering: regenerative strategies for endodontics and periodontics. Biomaterials Science. 2023;11(20):6711-47. DOI: https://doi.org/10.1039/D3BM00719G
Wuersching SN, Moser L, Obermeier KT, Kollmuss M. Microleakage of Restorative Materials Used for Temporization of Endodontic Access Cavities. Journal of Clinical Medicine. 2023;12(14):4762.
Youssef A-R, Emara R, Taher MM. Effects of mineral trioxide aggregate, calcium hydroxide, biodentine and Emdogain on osteogenesis, Odontogenesis, angiogenesis and cell viability of dental pulp stem cells. BMC oral health. 2019;19:1-9. DOI: https://doi.org/10.1186/s12903-019-0827-0
Lertwisitphon P, Worapasphaiboon Y, Champakanan N. Enhancing elemental release and antibacterial properties of resin-based dental sealants with calcium phosphate, bioactive glass, and polylysine. BMC Oral Health. 2025;25(1):96. DOI: https://doi.org/10.1186/s12903-025-05489-2
Wuersching SN, Moser L, Obermeier KT, Kollmuss M. Microleakage of Restorative Materials Used for Temporization of Endodontic Access Cavities. J Clin Med. 2023;12(14). DOI: https://doi.org/10.3390/jcm12144762
Dioguardi M, Alovisi M, Sovereto D, et al. Sealing ability and microbial leakage of root-end filling materials: MTA versus epoxy resin: A systematic review and meta-analysis. Heliyon. 2021;7(7). DOI: https://doi.org/10.1016/j.heliyon.2021.e07494
Althaqafi KA, Satterthwaite J, AlShabib A, Silikas N. Synthesis and characterisation of microcapsules for self-healing dental resin composites. BMC Oral Health. 2024;24(1):109. DOI: https://doi.org/10.1186/s12903-023-03764-8
Talaat S, Hashem AA, Abu-Seida A, Abdel Wahed A, Abdel Aziz TM. Regenerative potential of mesoporous silica nanoparticles scaffold on dental pulp and root maturation in immature dog’s teeth: a histologic and radiographic study. BMC Oral Health. 2024;24(1):817. DOI: https://doi.org/10.1186/s12903-024-04368-6
Li H, Huang Y, Zhou X. Intelligent pH-responsive dental sealants to prevent long-term microleakage. Dental materials : official publication of the Academy of Dental Materials. 2021;37(10):1529-41. DOI: https://doi.org/10.1016/j.dental.2021.08.002
Nie E, Yu J, Jiang R. Effectiveness of Direct Pulp Capping Bioactive Materials in Dentin Regeneration: A Systematic Review. Materials. 2021;14(22):6811.
Kadali N, Alla RK, Guduri V, AV R, MC SS, Raju RV. Mineral Trioxide Aggregate: An overview of composition, properties and clinical applications. Int J Dent Mater. 2020;2(1):11-8. DOI: https://doi.org/10.37983/IJDM.2020.2103
Estrela C, Cintra LTA, Duarte MAH, Rossi-Fedele G, Gavini G, Sousa-Neto MD. Mechanism of action of Bioactive Endodontic Materials. Braz Dent J. 2023;34(1):1-11. DOI: https://doi.org/10.1590/0103-6440202305278
Aprillia I, Usman M, Asrianti D. Comparison of calcium ion release from MTA-Angelus® and Biodentine®. Paper presented at: Journal of Physics: Conference Series; 2018. DOI: https://doi.org/10.1088/1742-6596/1073/5/052008
Celiksoz O, Irmak O. Delayed vs. immediate placement of restorative materials over Biodentine and RetroMTA: a micro-shear bond strength study. BMC Oral Health. 2024;24(1):130. DOI: https://doi.org/10.1186/s12903-024-03917-3
Ravindran V, Jeevanandan G, Marimuthu M, et al. Comparison of mineral trioxide aggregate and biodentine for open apex management in children with nonvital immature permanent teeth: a systematic review. European Journal of General Dentistry. 2022;11(02):084-093. DOI: https://doi.org/10.1055/s-0042-1750090
Brizuela M, Daley J. Dental Materials: Biodentine, a Calcium Silicate Bioactive. StatPearls; 2024.
Butt N, Talwar S, Chaudhry S, Nawal RR, Yadav S, Bali A. Comparison of physical and mechanical properties of mineral trioxide aggregate and Biodentine. Indian Journal of Dental Research. 2014;25(6):692-7. DOI: https://doi.org/10.4103/0970-9290.152163
Zain YAM. Fracture Resistance of Immanture Teeth Filled Without Bioaggregate, Mineral Trioxide, Aggregate and Biodentine-A comparative in Vitro Study, Rajiv Gandhi University of Health Sciences (India); 2018.
Koutrouli A, Machla F, Arapostathis K, Kokoti M, Bakopoulou A. “Biological responses of two calcium-silicate-based cements on a tissue-engineered 3D organotypic deciduous pulp analogue”. Dental Materials. 2024;40(5):e14-e25. DOI: https://doi.org/10.1016/j.dental.2024.02.024
Abou ElReash A, Hamama H, Abdo W, Wu Q, Zaen El-Din A, Xiaoli X. Biocompatibility of new bioactive resin composite versus calcium silicate cements: an animal study. BMC Oral Health. 2019;19(1):194. DOI: https://doi.org/10.1186/s12903-019-0887-1
Fan J, Wang P, Wang S, et al. Advances in macro-bioactive materials enhancing dentin bonding. Discover Nano. 2025;20(1):40. DOI: https://doi.org/10.1186/s11671-025-04206-w
Sabeti M, Huang Y, Chung YJ, Azarpazhooh A. Prognosis of vital pulp therapy on permanent dentition: a systematic review and meta-analysis of randomized controlled trials. Journal of Endodontics. 2021;47(11):1683-95. DOI: https://doi.org/10.1016/j.joen.2021.08.008
Kulkarni P, Tiwari S, Agrawal N, Kumar A, Umarekar P, Bhargava S. Clinical Outcome of Direct Pulp Therapy in Primary Teeth: A Systematic Review and Meta-analysis. Journal of Indian Society of Pedodontics and Preventive Dentistry. 2022;40(2):105-11. DOI: https://doi.org/10.4103/jisppd.jisppd_210_22
Nie E, Yu J, Jiang R. Effectiveness of Direct Pulp Capping Bioactive Materials in Dentin Regeneration: A Systematic Review. Materials (Basel, Switzerland). 2021;14(22). DOI: https://doi.org/10.3390/ma14226811
Shafaee H, Alirezaie M, Rangrazi A, Bardideh E. Comparison of the success rate of a bioactive dentin substitute with those of other root restoration materials in pulpotomy of primary teeth: Systematic review and meta-analysis. The Journal of the American Dental Association. 2019;150(8):676-88. DOI: https://doi.org/10.1016/j.adaj.2019.03.002
Fugolin AP, Pfeifer CS. Engineering a new generation of thermoset self-healing polymers based on intrinsic approaches. JADA Foundational Science. 2022;1:100014. DOI: https://doi.org/10.1016/j.jfscie.2022.100014
Gan S-N, Shahabudin N. Applications of Microcapsules in Self-Healing Polymeric Materials. In: Salaün F, ed. Microencapsulation - Processes, Technologies and Industrial Applications. Rijeka: IntechOpen; 2019.
Wu J, Weir MD, Zhang Q, Zhou C, Melo MA, Xu HH. Novel self-healing dental resin with microcapsules of polymerizable triethylene glycol dimethacrylate and N,N-dihydroxyethyl-p-toluidine. Dental materials : official publication of the Academy of Dental Materials. 2016;32(2):294-304. DOI: https://doi.org/10.1016/j.dental.2015.11.014
Fugolin APP, Ferracane JL, Pfeifer CS. "Fatigue-Crack Propagation Behavior in Microcapsule-Containing Self-Healing Polymeric Networks". Materials & design. 2022;223. DOI: https://doi.org/10.1016/j.matdes.2022.111142
Goertz JP, DeMella KC, Thompson BR, White IM, Raghavan SR. Responsive capsules that enable hermetic encapsulation of contents and their thermally triggered burst-release. Materials Horizons. 2019;6(6):1238-43. DOI: https://doi.org/10.1039/C9MH00309F
Yahyazadehfar M, Huyang G, Wang X, Fan Y, Arola D, Sun J. Durability of self-healing dental composites: A comparison of performance under monotonic and cyclic loading. Materials Science and Engineering: C. 2018;93:1020-6. DOI: https://doi.org/10.1016/j.msec.2018.08.057
Bukhary S, Alkahtany S, AlDabeeb D. The Effect of Silver Nanoparticles on Bond Strength of Calcium Silicate-Based Sealer: An In Vitro Study. Applied Sciences. 2024;14(21):9817. DOI: https://doi.org/10.3390/app14219817
Shafie RAE, Mahran AH, Nabeel M. Effect of Calcium Hydroxide Nanoparticles Incorporation on the Physical Properties of Root Canal Sealer.(In Vitro Study). Journal of Fundamental and Clinical Research. 2022;2(2):141-56. DOI: https://doi.org/10.21608/jfcr.2022.166519.1037
Alfaer AS, Hasousah SQ, Alhayani WA, Alhumayed JS, Alazmi AO. Wear Patterns in Modern Dental Materials Used in Extensive Tooth Replacement Treatments; 2025. DOI: https://doi.org/10.52533/JOHS.2025.50108
Mutluay MM, Yahyazadehfar M, Ryou H, Majd H, Do D, Arola D. Fatigue of the resin-dentin interface: a new approach for evaluating the durability of dentin bonds. Dental materials : official publication of the Academy of Dental Materials. 2013;29(4):437-49. DOI: https://doi.org/10.1016/j.dental.2013.01.008
Li M, Lv J, Yang Y. Advances of Hydrogel Therapy in Periodontal Regeneration—A Materials Perspective Review. Gels. 2022;8(10):624. DOI: https://doi.org/10.3390/gels8100624
Liu H, Shen Y. Environmental stimuli‐responsive hydrogels in endodontics Advances and perspectives. International Endodontic Journal. 2025;58.
Fugolin APP, Huynh B, Rajasekaran SP. Innovations in the Design and Application of Stimuli-Responsive Restorative Dental Polymers. Polymers. 2023;15(16):3346. DOI: https://doi.org/10.3390/polym15163346
He Y, Vasilev K, Zilm P. pH-Responsive Biomaterials for the Treatment of Dental Caries-A Focussed and Critical Review. Pharmaceutics. 2023;15(7). DOI: https://doi.org/10.3390/pharmaceutics15071837
Takahashi N, Nyvad B. The Role of Bacteria in the Caries Process:Ecological Perspectives. Journal of Dental Research. 2011;90(3):294-303. DOI: https://doi.org/10.1177/0022034510379602
Akram Z, Aati S, Ngo H, Fawzy A. pH-dependent delivery of chlorhexidine from PGA grafted mesoporous silica nanoparticles at resin-dentin interface. Journal of Nanobiotechnology. 2021;19(1):43. DOI: https://doi.org/10.1186/s12951-021-00788-6
Akram Z, Daood U, Aati S, Ngo H, Fawzy AS. Formulation of pH-sensitive chlorhexidine-loaded/mesoporous silica nanoparticles modified experimental dentin adhesive. Materials Science and Engineering: C. 2021;122:111894. DOI: https://doi.org/10.1016/j.msec.2021.111894
Alkandari M, Barai P, Atia GAN, et al. Bioactive Functionalized Chitosan Thermo‐Responsive Hydrogels as Promising Platforms for Therapeutic, Regenerative Oral, and Maxillofacial Applications. Biotechnology Journal. 2025;20(1):e202400653. DOI: https://doi.org/10.1002/biot.202400653
Liang Z, Li J, Lin H. Understanding the multi-functionality and tissue-specificity of decellularized dental pulp matrix hydrogels for endodontic regeneration. Acta Biomaterialia. 2024;181:202-21. DOI: https://doi.org/10.1016/j.actbio.2024.04.040
Kocak FZ, Talari AC, Yar M, Rehman IU. In-situ forming pH and thermosensitive injectable hydrogels to stimulate angiogenesis: potential candidates for fast bone regeneration applications. International journal of molecular sciences. 2020;21(5):1633. DOI: https://doi.org/10.3390/ijms21051633
Abbass MMS, El-Rashidy AA, Sadek KM. Hydrogels and Dentin-Pulp Complex Regeneration: From the Benchtop to Clinical Translation. Polymers (Basel). 2020;12(12). DOI: https://doi.org/10.3390/polym12122935
Sadaghiani L, Alshumrani AM, Gleeson HB, Ayre WN, Sloan AJ. Growth factor release and dental pulp stem cell attachment following dentine conditioning: An in vitro study. Int Endod J. 2022;55(8):858-69. DOI: https://doi.org/10.1111/iej.13781
Jin R, Song G, Chai J, Gou X, Yuan G, Chen Z. Effects of concentrated growth factor on proliferation, migration, and differentiation of human dental pulp stem cells in vitro. Journal of Tissue Engineering. 2018;9:2041731418817505. DOI: https://doi.org/10.1177/2041731418817505
Liu H, Shen Y. Environmental stimuli-responsive hydrogels in endodontics: Advances and perspectives. Int Endod J. 2025;58(5):674-84. DOI: https://doi.org/10.1111/iej.14208
Meza G, Urrejola D, Saint Jean N, et al. Personalized Cell Therapy for Pulpitis Using Autologous Dental Pulp Stem Cells and Leukocyte Platelet-rich Fibrin: A Case Report. J Endod. 2019;45(2):144-9 DOI: https://doi.org/10.1016/j.joen.2018.11.009