Bioactive and self-healing smart materials in pulp therapy

Authors

  • Maha Ali Abdulwahab North Jeddah Specialist Dental Center, King Abdullah Medical Complex, Jeddah, Saudi Arabia
  • Hussain Abdulwahab Al Makeynah College of Dentistry, King Faisal University, Hofuf, Saudi Arabia
  • Mohammed Farhan Alruwaili Department of Dentistry, Private Center, Arar, Saudi
  • Ahmed Yousef Alhattab College of Dentistry, King Faisal University, Al Ahsa, Saudi Arabia
  • Mohammed Mousa Al Khulaif College of Dentistry, King Faisal University, Al Ahsa, Saudi Arabia
  • Abdulrahman Saad Alamri Department Of Dentistry, Private Dental Clinic, Medina, Saudi Arabia
  • Yazeed Saeed Al Qarni Department of Dentistry, King Khalid University, Abha, Saudi Arabia
  • Afnan Ahmad Alhabardi Department of Dentistry, Alrawabi Primary Healthcare Center, Ministry of Health, Qassim province, Unaizah, Saudi Arabia
  • Mohammad Fudhi Alreshidi Department of Dentistry, Al-Safraa Primary Health Care, King Fahd Specialist Hospital in Buraydah, Saudi Arabia
  • Aseel Hamdan Albeladi College of Dentistry, Vision College, Jeddah, Saudi Arabia
  • Adel Hussain Alwadai Department of Dentistry, Samaia Private Clinic, Abha, Saudi Arabia

DOI:

https://doi.org/10.18203/2394-6040.ijcmph20253720

Keywords:

Pulp therapy, Smart materials, Self-healing systems, Bioactive materials, Reparative dentin, Stimuli-responsive formulations

Abstract

The efficiency of pulp therapy has been greatly impacted by the development of materials used in endodontic and restorative dentistry. Biologically based regenerative pulp treatment has entered a new era, specifically with the advent of smart materials, which are characterized by their capacity to react actively to environmental stimuli. Along with sealing and protecting the pulp, these materials' bioactivity and, in certain situations, self-healing properties enable them to aid in tissue repair, lower inflammation, and promote the regeneration of the dentin-pulp complex. Calcium silicate-based sealers, Mineral Trioxide Aggregate (MTA), and bioactive materials like biodentine encourage biomineralization and the formation of reparative dentin, while self-healing systems like microcapsule-based composites can independently restore structural integrity after microcracks. The third frontier in smart dental materials is represented by stimuli-responsive formulations, which release therapeutic agents under controlled conditions in response to variations in pH, moisture content, or bacterial activity. Through an analysis of their mechanisms of action, clinical results, advancements in material science, and potential applications, this review seeks to investigate the role of bioactive and self-healing smart materials in pulp therapy. To educate researchers and clinicians about the new technologies that are changing pulp preservation and regeneration techniques in minimally invasive dentistry, the objective is to present an up-to-date summary of available data.

Metrics

Metrics Loading ...

References

Duncan HF. Present status and future directions—Vital pulp treatment and pulp preservation strategies. International Endodontic Journal. 2022;55:497-511. DOI: https://doi.org/10.1111/iej.13688

Rajasekar V, Abdalla MM, Huang M, Neelakantan P, Yiu CKY. Next-Generation Biomaterials for Vital Pulp Therapy: Exploring Biological Properties and Dentin Regeneration Mechanisms. Bioengineering. 2025;12(3):248. DOI: https://doi.org/10.3390/bioengineering12030248

Abdelaziz AA, Elgohary MS, Atiya MA, Saleh HA, Elgohary Sr MS. A Comparative Study of Different Traditional and Bioactive Indirect Pulp Lining Materials on Post-Operative Dentin Hypersensitivity: An In Vivo Study. Cureus. 2025;17(1). DOI: https://doi.org/10.7759/cureus.76984

Ali AS, El-Bioumy SY, Mostafa MH. Evaluation of different indirect pulp treatment materials used in deep carious primary molars. Al-Azhar Dental Journal for Girls. 2023;10(2):495-502. DOI: https://doi.org/10.58675/2974-4164.1488

Alhusainy A. Long-Term Outcomes of Vital Pulp Therapy in Deep Carious Lesions Using Bioceramic Materials. Journal of pharmacy & bioallied sciences. 2024;16(Suppl 4):S3721-3. DOI: https://doi.org/10.4103/jpbs.jpbs_1187_24

El Saied NT, Awad SM, Alhosainy AY. Evaluation of dirEct pulp capping in carious primary molars: a 12-month randomizEd controllEd clinical trial. Journal of Stomatology. 2024;77(4):253-63. DOI: https://doi.org/10.5114/jos.2024.145755

Widbiller M, Galler KM. Engineering the Future of Dental Health: Exploring Molecular Advancements in Dental Pulp Regeneration. International Journal of Molecular Sciences. 2023;24(14):11453. DOI: https://doi.org/10.3390/ijms241411453

Dal-Fabbro R, Swanson WB, Capalbo LC, Sasaki H, Bottino MC. Next-generation biomaterials for dental pulp tissue immunomodulation. Dental materials : official publication of the Academy of Dental Materials. 2023;39(4):333-49. DOI: https://doi.org/10.1016/j.dental.2023.03.013

Ballal NV, Duncan HF, Wiedemeier DB, et al. MMP-9 Levels and NaOCl Lavage in Randomized Trial on Direct Pulp Capping. J Dent Res. 2022;101(4):414-9. DOI: https://doi.org/10.1177/00220345211046874

Chen Y, Zhang F, Fu Q, Liu Y, Wang Z, Qi N. In vitro proliferation and osteogenic differentiation of human dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/ hydroxyapatite hydrogel. Journal of biomaterials applications. 2016;31(3):317-27. DOI: https://doi.org/10.1177/0885328216661566

Ducret M, Montembault A, Josse J. Design and characterization of a chitosan-enriched fibrin hydrogel for human dental pulp regeneration. Dental materials : official publication of the Academy of Dental Materials. 2019;35(4):523-33. DOI: https://doi.org/10.1016/j.dental.2019.01.018

Atila D, Kumaravel V. Advances in antimicrobial hydrogels for dental tissue engineering: regenerative strategies for endodontics and periodontics. Biomaterials Science. 2023;11(20):6711-47. DOI: https://doi.org/10.1039/D3BM00719G

Wuersching SN, Moser L, Obermeier KT, Kollmuss M. Microleakage of Restorative Materials Used for Temporization of Endodontic Access Cavities. Journal of Clinical Medicine. 2023;12(14):4762.

Youssef A-R, Emara R, Taher MM. Effects of mineral trioxide aggregate, calcium hydroxide, biodentine and Emdogain on osteogenesis, Odontogenesis, angiogenesis and cell viability of dental pulp stem cells. BMC oral health. 2019;19:1-9. DOI: https://doi.org/10.1186/s12903-019-0827-0

Lertwisitphon P, Worapasphaiboon Y, Champakanan N. Enhancing elemental release and antibacterial properties of resin-based dental sealants with calcium phosphate, bioactive glass, and polylysine. BMC Oral Health. 2025;25(1):96. DOI: https://doi.org/10.1186/s12903-025-05489-2

Wuersching SN, Moser L, Obermeier KT, Kollmuss M. Microleakage of Restorative Materials Used for Temporization of Endodontic Access Cavities. J Clin Med. 2023;12(14). DOI: https://doi.org/10.3390/jcm12144762

Dioguardi M, Alovisi M, Sovereto D, et al. Sealing ability and microbial leakage of root-end filling materials: MTA versus epoxy resin: A systematic review and meta-analysis. Heliyon. 2021;7(7). DOI: https://doi.org/10.1016/j.heliyon.2021.e07494

Althaqafi KA, Satterthwaite J, AlShabib A, Silikas N. Synthesis and characterisation of microcapsules for self-healing dental resin composites. BMC Oral Health. 2024;24(1):109. DOI: https://doi.org/10.1186/s12903-023-03764-8

Talaat S, Hashem AA, Abu-Seida A, Abdel Wahed A, Abdel Aziz TM. Regenerative potential of mesoporous silica nanoparticles scaffold on dental pulp and root maturation in immature dog’s teeth: a histologic and radiographic study. BMC Oral Health. 2024;24(1):817. DOI: https://doi.org/10.1186/s12903-024-04368-6

Li H, Huang Y, Zhou X. Intelligent pH-responsive dental sealants to prevent long-term microleakage. Dental materials : official publication of the Academy of Dental Materials. 2021;37(10):1529-41. DOI: https://doi.org/10.1016/j.dental.2021.08.002

Nie E, Yu J, Jiang R. Effectiveness of Direct Pulp Capping Bioactive Materials in Dentin Regeneration: A Systematic Review. Materials. 2021;14(22):6811.

Kadali N, Alla RK, Guduri V, AV R, MC SS, Raju RV. Mineral Trioxide Aggregate: An overview of composition, properties and clinical applications. Int J Dent Mater. 2020;2(1):11-8. DOI: https://doi.org/10.37983/IJDM.2020.2103

Estrela C, Cintra LTA, Duarte MAH, Rossi-Fedele G, Gavini G, Sousa-Neto MD. Mechanism of action of Bioactive Endodontic Materials. Braz Dent J. 2023;34(1):1-11. DOI: https://doi.org/10.1590/0103-6440202305278

Aprillia I, Usman M, Asrianti D. Comparison of calcium ion release from MTA-Angelus® and Biodentine®. Paper presented at: Journal of Physics: Conference Series; 2018. DOI: https://doi.org/10.1088/1742-6596/1073/5/052008

Celiksoz O, Irmak O. Delayed vs. immediate placement of restorative materials over Biodentine and RetroMTA: a micro-shear bond strength study. BMC Oral Health. 2024;24(1):130. DOI: https://doi.org/10.1186/s12903-024-03917-3

Ravindran V, Jeevanandan G, Marimuthu M, et al. Comparison of mineral trioxide aggregate and biodentine for open apex management in children with nonvital immature permanent teeth: a systematic review. European Journal of General Dentistry. 2022;11(02):084-093. DOI: https://doi.org/10.1055/s-0042-1750090

Brizuela M, Daley J. Dental Materials: Biodentine, a Calcium Silicate Bioactive. StatPearls; 2024.

Butt N, Talwar S, Chaudhry S, Nawal RR, Yadav S, Bali A. Comparison of physical and mechanical properties of mineral trioxide aggregate and Biodentine. Indian Journal of Dental Research. 2014;25(6):692-7. DOI: https://doi.org/10.4103/0970-9290.152163

Zain YAM. Fracture Resistance of Immanture Teeth Filled Without Bioaggregate, Mineral Trioxide, Aggregate and Biodentine-A comparative in Vitro Study, Rajiv Gandhi University of Health Sciences (India); 2018.

Koutrouli A, Machla F, Arapostathis K, Kokoti M, Bakopoulou A. “Biological responses of two calcium-silicate-based cements on a tissue-engineered 3D organotypic deciduous pulp analogue”. Dental Materials. 2024;40(5):e14-e25. DOI: https://doi.org/10.1016/j.dental.2024.02.024

Abou ElReash A, Hamama H, Abdo W, Wu Q, Zaen El-Din A, Xiaoli X. Biocompatibility of new bioactive resin composite versus calcium silicate cements: an animal study. BMC Oral Health. 2019;19(1):194. DOI: https://doi.org/10.1186/s12903-019-0887-1

Fan J, Wang P, Wang S, et al. Advances in macro-bioactive materials enhancing dentin bonding. Discover Nano. 2025;20(1):40. DOI: https://doi.org/10.1186/s11671-025-04206-w

Sabeti M, Huang Y, Chung YJ, Azarpazhooh A. Prognosis of vital pulp therapy on permanent dentition: a systematic review and meta-analysis of randomized controlled trials. Journal of Endodontics. 2021;47(11):1683-95. DOI: https://doi.org/10.1016/j.joen.2021.08.008

Kulkarni P, Tiwari S, Agrawal N, Kumar A, Umarekar P, Bhargava S. Clinical Outcome of Direct Pulp Therapy in Primary Teeth: A Systematic Review and Meta-analysis. Journal of Indian Society of Pedodontics and Preventive Dentistry. 2022;40(2):105-11. DOI: https://doi.org/10.4103/jisppd.jisppd_210_22

Nie E, Yu J, Jiang R. Effectiveness of Direct Pulp Capping Bioactive Materials in Dentin Regeneration: A Systematic Review. Materials (Basel, Switzerland). 2021;14(22). DOI: https://doi.org/10.3390/ma14226811

Shafaee H, Alirezaie M, Rangrazi A, Bardideh E. Comparison of the success rate of a bioactive dentin substitute with those of other root restoration materials in pulpotomy of primary teeth: Systematic review and meta-analysis. The Journal of the American Dental Association. 2019;150(8):676-88. DOI: https://doi.org/10.1016/j.adaj.2019.03.002

Fugolin AP, Pfeifer CS. Engineering a new generation of thermoset self-healing polymers based on intrinsic approaches. JADA Foundational Science. 2022;1:100014. DOI: https://doi.org/10.1016/j.jfscie.2022.100014

Gan S-N, Shahabudin N. Applications of Microcapsules in Self-Healing Polymeric Materials. In: Salaün F, ed. Microencapsulation - Processes, Technologies and Industrial Applications. Rijeka: IntechOpen; 2019.

Wu J, Weir MD, Zhang Q, Zhou C, Melo MA, Xu HH. Novel self-healing dental resin with microcapsules of polymerizable triethylene glycol dimethacrylate and N,N-dihydroxyethyl-p-toluidine. Dental materials : official publication of the Academy of Dental Materials. 2016;32(2):294-304. DOI: https://doi.org/10.1016/j.dental.2015.11.014

Fugolin APP, Ferracane JL, Pfeifer CS. "Fatigue-Crack Propagation Behavior in Microcapsule-Containing Self-Healing Polymeric Networks". Materials & design. 2022;223. DOI: https://doi.org/10.1016/j.matdes.2022.111142

Goertz JP, DeMella KC, Thompson BR, White IM, Raghavan SR. Responsive capsules that enable hermetic encapsulation of contents and their thermally triggered burst-release. Materials Horizons. 2019;6(6):1238-43. DOI: https://doi.org/10.1039/C9MH00309F

Yahyazadehfar M, Huyang G, Wang X, Fan Y, Arola D, Sun J. Durability of self-healing dental composites: A comparison of performance under monotonic and cyclic loading. Materials Science and Engineering: C. 2018;93:1020-6. DOI: https://doi.org/10.1016/j.msec.2018.08.057

Bukhary S, Alkahtany S, AlDabeeb D. The Effect of Silver Nanoparticles on Bond Strength of Calcium Silicate-Based Sealer: An In Vitro Study. Applied Sciences. 2024;14(21):9817. DOI: https://doi.org/10.3390/app14219817

Shafie RAE, Mahran AH, Nabeel M. Effect of Calcium Hydroxide Nanoparticles Incorporation on the Physical Properties of Root Canal Sealer.(In Vitro Study). Journal of Fundamental and Clinical Research. 2022;2(2):141-56. DOI: https://doi.org/10.21608/jfcr.2022.166519.1037

Alfaer AS, Hasousah SQ, Alhayani WA, Alhumayed JS, Alazmi AO. Wear Patterns in Modern Dental Materials Used in Extensive Tooth Replacement Treatments; 2025. DOI: https://doi.org/10.52533/JOHS.2025.50108

Mutluay MM, Yahyazadehfar M, Ryou H, Majd H, Do D, Arola D. Fatigue of the resin-dentin interface: a new approach for evaluating the durability of dentin bonds. Dental materials : official publication of the Academy of Dental Materials. 2013;29(4):437-49. DOI: https://doi.org/10.1016/j.dental.2013.01.008

Li M, Lv J, Yang Y. Advances of Hydrogel Therapy in Periodontal Regeneration—A Materials Perspective Review. Gels. 2022;8(10):624. DOI: https://doi.org/10.3390/gels8100624

Liu H, Shen Y. Environmental stimuli‐responsive hydrogels in endodontics Advances and perspectives. International Endodontic Journal. 2025;58.

Fugolin APP, Huynh B, Rajasekaran SP. Innovations in the Design and Application of Stimuli-Responsive Restorative Dental Polymers. Polymers. 2023;15(16):3346. DOI: https://doi.org/10.3390/polym15163346

He Y, Vasilev K, Zilm P. pH-Responsive Biomaterials for the Treatment of Dental Caries-A Focussed and Critical Review. Pharmaceutics. 2023;15(7). DOI: https://doi.org/10.3390/pharmaceutics15071837

Takahashi N, Nyvad B. The Role of Bacteria in the Caries Process:Ecological Perspectives. Journal of Dental Research. 2011;90(3):294-303. DOI: https://doi.org/10.1177/0022034510379602

Akram Z, Aati S, Ngo H, Fawzy A. pH-dependent delivery of chlorhexidine from PGA grafted mesoporous silica nanoparticles at resin-dentin interface. Journal of Nanobiotechnology. 2021;19(1):43. DOI: https://doi.org/10.1186/s12951-021-00788-6

Akram Z, Daood U, Aati S, Ngo H, Fawzy AS. Formulation of pH-sensitive chlorhexidine-loaded/mesoporous silica nanoparticles modified experimental dentin adhesive. Materials Science and Engineering: C. 2021;122:111894. DOI: https://doi.org/10.1016/j.msec.2021.111894

Alkandari M, Barai P, Atia GAN, et al. Bioactive Functionalized Chitosan Thermo‐Responsive Hydrogels as Promising Platforms for Therapeutic, Regenerative Oral, and Maxillofacial Applications. Biotechnology Journal. 2025;20(1):e202400653. DOI: https://doi.org/10.1002/biot.202400653

Liang Z, Li J, Lin H. Understanding the multi-functionality and tissue-specificity of decellularized dental pulp matrix hydrogels for endodontic regeneration. Acta Biomaterialia. 2024;181:202-21. DOI: https://doi.org/10.1016/j.actbio.2024.04.040

Kocak FZ, Talari AC, Yar M, Rehman IU. In-situ forming pH and thermosensitive injectable hydrogels to stimulate angiogenesis: potential candidates for fast bone regeneration applications. International journal of molecular sciences. 2020;21(5):1633. DOI: https://doi.org/10.3390/ijms21051633

Abbass MMS, El-Rashidy AA, Sadek KM. Hydrogels and Dentin-Pulp Complex Regeneration: From the Benchtop to Clinical Translation. Polymers (Basel). 2020;12(12). DOI: https://doi.org/10.3390/polym12122935

Sadaghiani L, Alshumrani AM, Gleeson HB, Ayre WN, Sloan AJ. Growth factor release and dental pulp stem cell attachment following dentine conditioning: An in vitro study. Int Endod J. 2022;55(8):858-69. DOI: https://doi.org/10.1111/iej.13781

Jin R, Song G, Chai J, Gou X, Yuan G, Chen Z. Effects of concentrated growth factor on proliferation, migration, and differentiation of human dental pulp stem cells in vitro. Journal of Tissue Engineering. 2018;9:2041731418817505. DOI: https://doi.org/10.1177/2041731418817505

Liu H, Shen Y. Environmental stimuli-responsive hydrogels in endodontics: Advances and perspectives. Int Endod J. 2025;58(5):674-84. DOI: https://doi.org/10.1111/iej.14208

Meza G, Urrejola D, Saint Jean N, et al. Personalized Cell Therapy for Pulpitis Using Autologous Dental Pulp Stem Cells and Leukocyte Platelet-rich Fibrin: A Case Report. J Endod. 2019;45(2):144-9 DOI: https://doi.org/10.1016/j.joen.2018.11.009

Downloads

Published

2025-10-31

How to Cite

Abdulwahab, M. A., Makeynah, H. A. A., Alruwaili, M. F., Alhattab, A. Y., Khulaif, M. M. A., Alamri, A. S., Qarni, Y. S. A., Alhabardi, A. A., Alreshidi, M. F., Albeladi, A. H., & Alwadai, A. H. (2025). Bioactive and self-healing smart materials in pulp therapy. International Journal Of Community Medicine And Public Health, 12(11), 5313–5318. https://doi.org/10.18203/2394-6040.ijcmph20253720

Issue

Section

Review Articles