Impact of systemic diseases healing on outcomes on facial trauma patients
DOI:
https://doi.org/10.18203/2394-6040.ijcmph20253719Keywords:
Facial trauma, Facial trauma healing, Wound healing, Fracture healing, Healing outcomes, Systemic diseases, Diabetes mellitus, Cardiovascular diseasesAbstract
Facial trauma is considered a major public health issue. It is mainly caused by road traffic accidents, falls, and sports injuries. Facial trauma is associated with various functional and aesthetic adverse outcomes. The epidemiology of facial injuries differs globally, with variations in prevalence, causes, injury patterns, severity, and clinical outcomes. Facial trauma healing involves wound and fracture healing. Factors affecting healing include age, weight, and comorbidities. Systemic diseases are major determinants of the healing of injuries in various parts of the body. However, studies investigating their effects on facial trauma healing are scarce. This review aims to discuss how systemic diseases affect facial trauma healing. Diabetes induces some systemic alterations, including hyperglycemia and peripheral arterial disease, that can significantly delay healing. Chronic kidney disease delays healing through various mechanisms, including delayed granulation, disruption of keratinization kinetics, tissue edema, and large epithelial gaps. Diabetes also may impair fracture healing as a result of the elevated concentration of TNF-α at the fracture site and elevated osteoclasts in the diabetic callus. While the impact of calcium and vitamin D on fracture healing has been debatable. Although systemic diseases have a significant impact on trauma in various parts of the body, evidence on their impact on the healing outcomes of facial trauma specifically is still lacking. Thus, further research should focus on this specific topic.
Metrics
References
Esmer E, Delank KS, Siekmann H, Schulz M, Derst P. Facial injuries in polytrauma— which injuries can be expected? A retrospective evaluation from the TraumaRegister DGU®. Notfall Rettungsmed. 2016;19(2):92-8. DOI: https://doi.org/10.1007/s10049-015-0101-1
Shumynskyi I, Gurianov V, Kaniura O, Kopchak A. Prediction of mortality in severely injured patients with facial bone fractures. Oral Maxillofac Surg. 2022;26(1):161-70. DOI: https://doi.org/10.1007/s10006-021-00967-7
Hilaire CS, Johnson A, Loseth C, Alipour H, Faunce N, Kaminski S, et al. Facial fractures and associated injuries in high- versus low-energy trauma: all are not created equal. Maxillofac Plast Reconstr Surg. 2020;42(1):22. DOI: https://doi.org/10.1186/s40902-020-00264-5
Al-Ali MA, Hefny AF, Abu-Zidan FM. Head, face and neck camel-related injuries: biomechanics and severity. Injury. 2019;50(1):210-4. DOI: https://doi.org/10.1016/j.injury.2018.11.029
Al-Hassani A, Ahmad K, El-Menyar A, Abutaka A, Mekkodathil A, Peralta R, et al. Prevalence and patterns of maxillofacial trauma: a retrospective descriptive study. Eur J Trauma Emerg Surg. 2022;48(4):2513-9. DOI: https://doi.org/10.1007/s00068-019-01174-6
Al-Ali MA, Alao DO, Abu-Zidan FM. Factors affecting mortality of hospitalized facial trauma patients in Al-Ain City, United Arab Emirates. PLoS One. 2022;17(11):e0278381. DOI: https://doi.org/10.1371/journal.pone.0278381
Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 2020;10(9):200223. DOI: https://doi.org/10.1098/rsob.200223
Broughton G 2nd, Janis JE, Attinger CE. Wound healing: an overview. Plast Reconstr Surg. 2006;117(7 Suppl):1e–32e. DOI: https://doi.org/10.1097/01.prs.0000222562.60260.f9
Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res. 2009;37(5):1528-42. DOI: https://doi.org/10.1177/147323000903700531
Zaidi A, Green L. Physiology of haemostasis. Anaesth Intensive Care Med. 2022;23:111-7. DOI: https://doi.org/10.1016/j.mpaic.2021.10.023
Mahdavian Delavary B, van der Veer WM, van Egmond M, Niessen FB, Beelen RH. Macrophages in skin injury and repair. Immunobiology. 2011;216(7):753-62. DOI: https://doi.org/10.1016/j.imbio.2011.01.001
Cheng C, Shoback D. Mechanisms underlying normal fracture healing and risk factors for delayed healing. Curr Osteoporos Rep. 2019;17(1):36-47. DOI: https://doi.org/10.1007/s11914-019-00501-5
Kostenuik P, Mirza FM. Fracture healing physiology and the quest for therapies for delayed healing and nonunion. J Orthop Res. 2017;35(2):213-23. DOI: https://doi.org/10.1002/jor.23460
Hak DJ, Fitzpatrick D, Bishop JA, Marsh JL, Tilp S, Schnettler R, et al. Delayed union and nonunions: epidemiology, clinical issues, and financial aspects. Injury. 2014;45(2):S3-7. DOI: https://doi.org/10.1016/j.injury.2014.04.002
Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219-29. DOI: https://doi.org/10.1177/0022034509359125
De Foer B, Bernaerts A, Dhont K, Casselman JW. Facial and dental trauma. Semin Musculoskelet Radiol. 2020;24(5):579-90. DOI: https://doi.org/10.1055/s-0040-1701632
Hopper RA, Salemy S, Sze RW. Diagnosis of midface fractures with CT: what the surgeon needs to know. Radiographics. 2006;26(3):783-93. DOI: https://doi.org/10.1148/rg.263045710
Winegar BA, Murillo H, Tantiwongkosi B. Spectrum of critical imaging findings in complex facial skeletal trauma. Radiographics. 2013;33(1):3-19. DOI: https://doi.org/10.1148/rg.331125080
Uzelac A, Gean AD. Orbital and facial fractures. Neuroimaging Clin N Am. 2014;24(3):407-24. DOI: https://doi.org/10.1016/j.nic.2014.03.008
Loureiro RM, Naves EA, Zanello RF, Sumi DV, Gomes RLE, Daniel MM. Dental emergencies: a practical guide. Radiographics. 2019;39(6):1782-95. DOI: https://doi.org/10.1148/rg.2019190019
Alimohammadi R. Imaging of dentoalveolar and jaw trauma. Radiol Clin North Am. 2018;56(1):105-24. DOI: https://doi.org/10.1016/j.rcl.2017.08.008
Glendor U. Epidemiology of traumatic dental injuries: a 12-year review of the literature. Dent Traumatol. 2008;24(6):603-11. DOI: https://doi.org/10.1111/j.1600-9657.2008.00696.x
Bernaerts A, Veys B, Abeloos J, Dhont K, Casselman J, De Foer B. Sports-related maxillofacial injuries. In: Vanhoenacker FM, Maas M, Gielen JLMA, editors. Imaging Orthop Sports Injuries. 2021;643-63. DOI: https://doi.org/10.1007/174_2020_261
Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Invest. 2007;117(5):1219-22. DOI: https://doi.org/10.1172/JCI32169
Beyene RT, Derryberry SL Jr, Barbul A. The effect of comorbidities on wound healing. Surg Clin North Am. 2020;100(4):695-705. DOI: https://doi.org/10.1016/j.suc.2020.05.002
Baltzis D, Eleftheriadou I, Veves A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Adv Ther. 2014;31(8):817-36. DOI: https://doi.org/10.1007/s12325-014-0140-x
Janis JE, Harrison B. Wound healing: part I. Basic science. Plast Reconstr Surg. 2016;138(3):9S-17S. DOI: https://doi.org/10.1097/PRS.0000000000002773
Okonkwo UA, DiPietro LA. Diabetes and wound angiogenesis. Int J Mol Sci. 2017;18(7):1419. DOI: https://doi.org/10.3390/ijms18071419
Maroz N, Simman R. Wound healing in patients with impaired kidney function. J Am Coll Clin Wound Spec. 2013;5(1):2-7. DOI: https://doi.org/10.1016/j.jccw.2014.05.002
Wild T, Rahbarnia A, Kellner M, Sobotka L, Eberlein T. Basics in nutrition and wound healing. Nutrition. 2010;26(9):862-6. DOI: https://doi.org/10.1016/j.nut.2010.05.008
Chow O, Barbul A. Immunonutrition: role in wound healing and tissue regeneration. Adv Wound Care. 2014;3(1):46-53. DOI: https://doi.org/10.1089/wound.2012.0415
Kremer M, Burkemper N. Aging skin and wound healing. Clin Geriatr Med. 2024;40(1):1-10. DOI: https://doi.org/10.1016/j.cger.2023.06.001
Heal CF, Banks JL, Lepper PD, Kontopantelis E, van Driel ML. Topical antibiotics for preventing surgical site infection in wounds healing by primary intention. Cochrane Database Syst Rev. 2016;11:CD011426. DOI: https://doi.org/10.1002/14651858.CD011426.pub2
Jiao H, Xiao E, Graves DT. Diabetes and its effect on bone and fracture healing. Curr Osteoporos Rep. 2015;13(5):327-35. DOI: https://doi.org/10.1007/s11914-015-0286-8
Saul D, Khosla S. Fracture healing in the setting of endocrine diseases, aging, and cellular senescence. Endocr Rev. 2022;43(6):984-1002. DOI: https://doi.org/10.1210/endrev/bnac008
Murray CE, Coleman CM. Impact of diabetes mellitus on bone health. Int J Mol Sci. 2019;20(19):1-16. DOI: https://doi.org/10.3390/ijms20194873
Alblowi J, Kayal RA, Siqueira M, McKenzie E, Krothapalli N, McLean J, et al. High levels of tumor necrosis factor-alpha contribute to accelerated loss of cartilage in diabetic fracture healing. Am J Pathol. 2009;175(4):1574-85. DOI: https://doi.org/10.2353/ajpath.2009.090148
Kayal RA, Alblowi J, McKenzie E, Krothapalli N, Silkman L, Gerstenfeld L, et al. Diabetes causes the accelerated loss of cartilage during fracture repair which is reversed by insulin treatment. Bone. 2009;44(2):357-63. DOI: https://doi.org/10.1016/j.bone.2008.10.042
Hu Z, Ma C, Liang Y, Zou S, Liu X. Osteoclasts in bone regeneration under type 2 diabetes mellitus. Acta Biomater. 2019;84:402-13. DOI: https://doi.org/10.1016/j.actbio.2018.11.052
Mangialardi G, Ferland-McCollough D, Maselli D, Santopaolo M, Cordaro A, Spinetti G, Sambataro M, Sullivan N, Blom A, Madeddu P. Bone marrow pericyte dysfunction in individuals with type 2 diabetes. Diabetologia. 2019;62(7):1275-90. DOI: https://doi.org/10.1007/s00125-019-4865-6
Gandhi A, Beam HA, O'Connor JP, Parsons JR, Lin SS. The effects of local insulin delivery on diabetic fracture healing. Bone. 2005;37(4):482-90. DOI: https://doi.org/10.1016/j.bone.2005.04.039
Cignachi NP, Ribeiro A, Machado GDB, Cignachi AP, Kist LW, Bogo MR, Silva RBM, Campos MM. Bone regeneration in a mouse model of type 1 diabetes: Influence of sex, vitamin D3, and insulin. Life Sci. 2020;263:118593. DOI: https://doi.org/10.1016/j.lfs.2020.118593
Einhorn TA, Bonnarens F, Burstein AH. The contributions of dietary protein and mineral to the healing of experimental fractures: a biomechanical study. J Bone Joint Surg Am. 1986;68(9):1389-95. DOI: https://doi.org/10.2106/00004623-198668090-00012
Doepfner W. Consequences of calcium and/or phosphorus deficient diets on various parameters of callus formation and on growth rate in young rats. Br J Pharmacol. 1970;39(1):188-9.
Boszczyk AM, Zakrzewski P, Pomianowski S. Vitamin D concentration in patients with normal and impaired bone union. Pol Orthop Traumatol. 2013;78:1-3.
Brinker MR, O'Connor DP, Monla YT, Earthman TP. Metabolic and endocrine abnormalities in patients with nonunions. J Orthop Trauma. 2007;21(8):557-70. DOI: https://doi.org/10.1097/BOT.0b013e31814d4dc6
Dodds RA, Catterall A, Bitensky L, Chayen J. Abnormalities in fracture healing induced by vitamin B6 deficiency in rats. Bone. 1986;7(6):489-95. DOI: https://doi.org/10.1016/8756-3282(86)90008-6
Mohan S, Kapoor A, Singgih A, Zhang Z, Taylor T, Yu H, et al. Spontaneous fractures in the mouse mutant sfx are caused by deletion of the gulonolactone oxidase gene, causing vitamin C deficiency. J Bone Miner Res. 2005;20(9):1597-610. DOI: https://doi.org/10.1359/JBMR.050406
Koval KJ, Maurer SG, Su ET, Aharonoff GB, Zuckerman JD. The effects of nutritional status on outcome after hip fracture. J Orthop Trauma. 1999;13(3):164-9. DOI: https://doi.org/10.1097/00005131-199903000-00003