The role of biomarkers in the early diagnosis of traumatic brain injury
DOI:
https://doi.org/10.18203/2394-6040.ijcmph20253317Keywords:
Traumatic brain injury, Biomarkers, S100B, Neurofilament proteinsAbstract
Traumatic brain injury (TBI) is a leading cause of mortality worldwide. It is caused by blunt force, explosive blasts, sudden head acceleration or deceleration, or penetrating trauma to the skull. TBI can be classified according to GCS into mild (GCS 13-15), moderate (GCS 9-12), and severe (GCS 3-8). Symptoms of TBI vary from mild symptoms to neurodegenerative diseases. Neuroimaging is the most utilized diagnostic tool in cases of TBI. However, its complex pathophysiology mechanisms make it difficult to diagnose TBI early. Biomarkers of TBI, such as glial cell injury biomarkers, axonal injury biomarkers, and inflammation biomarkers, are emerging as diagnostic and prognostic tools in TBI. However, the diagnostic and prognostic values of biomarkers showed mixed results. The aim of this review is to discuss the role of biomarkers in the early diagnosis of TBI in adults and children. Pathophysiology of TBI includes disruption of blood-brain barrier (BBB), inflammatory response, mitochondrial dysfunction, and oxidative stress. Various biomarkers have been reported as potential diagnostic biomarkers for TBI, including neuron-specific enolase (NSE), S100B, neurofilament proteins (NFs), and tau proteins. Identifying the role of biomarkers in the diagnosis of TBI in children is challenging due to age-dependent baselines, sampling limitations, and funding gaps. Future research should focus more on investigating kinetics of TBI biomarkers before their application in clinical settings.
Metrics
References
Jiang JY, Gao GY, Feng JF, Qing M, Li-Gang C, Xiao-Feng Y, et al. Traumatic brain injury in China. Lancet Neurol. 2019;18(3):286-95. DOI: https://doi.org/10.1016/S1474-4422(18)30469-1
Wang K, Cui D, Gao L. Traumatic brain injury: a review of characteristics, molecular basis and management. Front Biosci. 2016;21(5):890-9. DOI: https://doi.org/10.2741/4426
Dixon KJ. Pathophysiology of Traumatic Brain Injury. Physical Med Rehabilitat Clin N Am. 2017;28(2):215-5. DOI: https://doi.org/10.1016/j.pmr.2016.12.001
Maas AIR, Menon DK, Adelson PD, Nada A, Michael JB, Antonio B, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017;16(12):987-1048. DOI: https://doi.org/10.1016/S1474-4422(17)30371-X
Maas AIR, Menon DK, Manley GT, Mathew A, Cecilia Å, Nada A, et al. Traumatic brain injury: progress and challenges in prevention, clinical care, and research. Lancet Neurol. 2022;21(11):1004-60. DOI: https://doi.org/10.1016/S1474-4422(22)00309-X
Ghaith HS, Nawar AA, Gabra MD, Mohamed EA, Mohamed HN, Eshak IB, et al. A Literature Review of Traumatic Brain Injury Biomarkers. Mol Neurobiol. 2022;59(7):4141-58. DOI: https://doi.org/10.1007/s12035-022-02822-6
Pearn ML, Niesman IR, Egawa J, Atsushi S, Almenar-Queralt A, Shah SB, et al. Pathophysiology Associated with Traumatic Brain Injury: Current Treatments and Potential Novel Therapeutics. Cellular Mol Neurobiol. 2017;37(4):571-85. DOI: https://doi.org/10.1007/s10571-016-0400-1
Silvestro S, Raffaele I, Quartarone A, Mazzon E. Innovative Insights into Traumatic Brain Injuries: Biomarkers and New Pharmacological Targets. Int J Mol Sci. 2024;25(4):2372. DOI: https://doi.org/10.3390/ijms25042372
Muneer PMA, Chandra N, Haorah J. Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury. Mol Neurobiol. 2015;51(3):966-79. DOI: https://doi.org/10.1007/s12035-014-8752-3
Quintard H, Patet C, Suys T, Marques-Vidal P, Oddo M. Normobaric hyperoxia is associated with increased cerebral excitotoxicity after severe traumatic brain injury. Neurocritical Care. 2015;22(2):243-50. DOI: https://doi.org/10.1007/s12028-014-0062-0
Chen C, Zhong X, Smith DK, Wenjiao T, Jianjing Y, Yuhua Z, et al. Astrocyte-Specific Deletion of Sox2 Promotes Functional Recovery After Traumatic Brain Injury. Cerebral Cortex. 2019;29(1):54-69. DOI: https://doi.org/10.1093/cercor/bhx303
Eierud C, Craddock RC, Fletcher S, Manek A, King-Casas B, Kuehl D, et al. Neuroimaging after mild traumatic brain injury: review and meta-analysis. Neuro Image Clin. 2014;4:283-94. DOI: https://doi.org/10.1016/j.nicl.2013.12.009
Hossain I, Marklund N, Czeiter E, Hutchinson P, Buki A. Blood biomarkers for traumatic brain injury: A narrative review of current evidence. Brain Spine. 2024;4:102735. DOI: https://doi.org/10.1016/j.bas.2023.102735
Dadas A, Janigro D. The role and diagnostic significance of cellular barriers after concussive head trauma. Concussion (London, England). 2018;3(1):Cnc53. DOI: https://doi.org/10.2217/cnc-2017-0019
Farooqui AA, Yi Ong W, Lu XR, Halliwell B, Horrocks LA. Neurochemical consequences of kainate-induced toxicity in brain: involvement of arachidonic acid release and prevention of toxicity by phospholipase A(2) inhibitors. Brain Res Brain Res Rev. 2001;38(1-2):61-78. DOI: https://doi.org/10.1016/S0169-328X(01)00214-5
Kumar Sahel D, Kaira M, Raj K, Sharma S, Singh S. Mitochondrial dysfunctioning and neuroinflammation: Recent highlights on the possible mechanisms involved in Traumatic Brain Injury. Neuroscience Letters. 2019;710:134347. DOI: https://doi.org/10.1016/j.neulet.2019.134347
Banjara M, Ghosh C. Sterile Neuroinflammation and Strategies for Therapeutic Intervention. Int J Inflammat. 2017;2017:8385961. DOI: https://doi.org/10.1155/2017/8385961
Corrigan F, Mander KA, Leonard AV, Vink R. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J Neuroinflammation. 2016;13(1):264. DOI: https://doi.org/10.1186/s12974-016-0738-9
Lotocki G, de Rivero Vaccari JP, Perez ER, Sanchez-Molano J, Furones-Alonso O, Bramlett HM, et al. Alterations in blood-brain barrier permeability to large and small molecules and leukocyte accumulation after traumatic brain injury: effects of post-traumatic hypothermia. J Neurotrauma. 2009;26(7):1123-34. DOI: https://doi.org/10.1089/neu.2008.0802
Furukawa S, Fujita T, Shimabukuro M, Masanori I, Yukio Y, Yoshimitsu N, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Investigat. 2004;114(12):1752-61. DOI: https://doi.org/10.1172/JCI200421625
Nita M, Grzybowski A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxidative Med Cellular Longevity. 2016;2016:3164734. DOI: https://doi.org/10.1155/2016/3164734
Uzhachenko R, Boyd K, Olivares-Villagomez D, Yueming Z, Goodwin JS, Rana T, et al. Mitochondrial protein Fus1/Tusc2 in premature aging and age-related pathologies: critical roles of calcium and energy homeostasis. Aging. 2017;9(3):627-49. DOI: https://doi.org/10.18632/aging.101213
Balog J, Mehta SL, Vemuganti R. Mitochondrial fission and fusion in secondary brain damage after CNS insults. J Cerebral Blood Flow Metabol. 2016;36(12):2022-33. DOI: https://doi.org/10.1177/0271678X16671528
Pham AH, Meng S, Chu QN, Chan DC. Loss of Mfn2 results in progressive, retrograde degeneration of dopaminergic neurons in the nigrostriatal circuit. Human Mol Genetics. 2012;21(22):4817-26. DOI: https://doi.org/10.1093/hmg/dds311
Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E. Mitochondrial fragmentation in neurodegeneration. Nature Rev Neurosci. 2008;9(7):505-18. DOI: https://doi.org/10.1038/nrn2417
Fan J, Dawson TM, Dawson VL. Cell Death Mechanisms of Neurodegeneration. Adv Neurobiol. 2017;15:403-25. DOI: https://doi.org/10.1007/978-3-319-57193-5_16
Wu Q, Xia SX, Li QQ, Yuan G, Xi S, Lu M, et al. Mitochondrial division inhibitor 1 (Mdivi-1) offers neuroprotection through diminishing cell death and improving functional outcome in a mouse model of traumatic brain injury. Brain Res. 2016;1630:134-43. DOI: https://doi.org/10.1016/j.brainres.2015.11.016
Rappold PM, Cui M, Grima JC, Rebecca ZF, de Mesy-Bentley KL, Chen L, et al. Drp1 inhibition attenuates neurotoxicity and dopamine release deficits in vivo. Nature Communications. 2014;5:5244. DOI: https://doi.org/10.1038/ncomms6244
Lorente L. Biomarkers Associated with the Outcome of Traumatic Brain Injury Patients. Brain Sci. 2017;7(11):142. DOI: https://doi.org/10.3390/brainsci7110142
Cheng F, Yuan Q, Yang J, Wang W, Liu H. The prognostic value of serum neuron-specific enolase in traumatic brain injury: systematic review and meta-analysis. PloS One. 2014;9(9):e106680. DOI: https://doi.org/10.1371/journal.pone.0106680
Mercier E, Boutin A, Shemilt M, François L, Ryan Z, Dean AF, et al. Predictive value of neuron-specific enolase for prognosis in patients with moderate or severe traumatic brain injury: a systematic review and meta-analysis. CMAJ Open. 2016;4(3):E371-82. DOI: https://doi.org/10.9778/cmajo.20150061
Azar S, Hasan A, Younes R, Farah N, Lama B, Hussein G, et al. Biofluid Proteomics and Biomarkers in Traumatic Brain Injury. Methods Molecular Biol. 2017;1598:45-63. DOI: https://doi.org/10.1007/978-1-4939-6952-4_3
Gong B, Leznik E. The role of ubiquitin C-terminal hydrolase L1 in neurodegenerative disorders. Drug News Perspectives. 2007;20(6):365-70. DOI: https://doi.org/10.1358/dnp.2007.20.6.1138160
Mondello S, Linnet A, Buki A, Steven R, Andrea G, Joseph T, et al. Clinical utility of serum levels of ubiquitin C-terminal hydrolase as a biomarker for severe traumatic brain injury. Neurosurgery. 2012;70(3):666-75.
Li J, Yu C, Sun Y, Li Y. Serum ubiquitin C-terminal hydrolase L1 as a biomarker for traumatic brain injury: a systematic review and meta-analysis. Am J Emergency Med. 2015;33(9):1191-6. DOI: https://doi.org/10.1016/j.ajem.2015.05.023
Wang KK, Yang Z, Zhu T, Yuan S, Richard R, Tyndall JA, et al. An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagnostics. 2018;18(2):165-80. DOI: https://doi.org/10.1080/14737159.2018.1428089
Barreto G, White RE, Ouyang Y, Xu L, Giffard RG. Astrocytes: targets for neuroprotection in stroke. Central Nervous System Agents Medicinal Chem. 2011;11(2):164-73. DOI: https://doi.org/10.2174/187152411796011303
Kawata K, Tierney R, Langford D. Blood and cerebrospinal fluid biomarkers. Handbook of Clinical Neurology. 2018;158:217-33. DOI: https://doi.org/10.1016/B978-0-444-63954-7.00022-7
Kleindienst A, Schmidt C, Parsch H, Emtmann I, Xu Y, Buchfelder M. The Passage of S100B from Brain to Blood Is Not Specifically Related to the Blood-Brain Barrier Integrity. Cardiovascular Psychiat Neurol. 2010;2010:801295. DOI: https://doi.org/10.1155/2010/801295
Pfortmueller CA, Drexel C, Krähenmann-Müller S, Alexander BL, Georg MF, Gregor L, et al. S-100 B Concentrations Are a Predictor of Decreased Survival in Patients with Major Trauma, Independently of Head Injury. PloS One. 2016;11(3):e0152822. DOI: https://doi.org/10.1371/journal.pone.0152822
Abbasi M, Sajjadi M, Fathi M, Maghsoudi M. Serum S100B Protein as an Outcome Prediction Tool in Emergency Department Patients with Traumatic Brain Injury. Turk J Emergency Med. 2014;14(4):147-52. DOI: https://doi.org/10.5505/1304.7361.2014.74317
Zhang Z, Zoltewicz JS, Mondello S, Kimberly JN, Zhihui Y, Boxuan Y, et al. Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products. PloS One. 2014;9(3):e92698. DOI: https://doi.org/10.1371/journal.pone.0092698
Gill J, Latour L, Diaz-Arrastia R, Vida M, Christine T, Pashtun S, et al. Glial fibrillary acidic protein elevations relate to neuroimaging abnormalities after mild TBI. Neurology. 2018;91(15):e1385-9. DOI: https://doi.org/10.1212/WNL.0000000000006321
Yuan A, Rao MV, Veeranna, Nixon RA. Neurofilaments and Neurofilament Proteins in Health and Disease. Cold Spring Harbor Perspectives Biol. 2017;9(4):a018309. DOI: https://doi.org/10.1101/cshperspect.a018309
Ost M, Nylén K, Csajbok L, Ohrfelt AO, Tullberg M, Wikkelsö C, et al. Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology. 2006;67(9):1600-4. DOI: https://doi.org/10.1212/01.wnl.0000242732.06714.0f
Mehta T, Fayyaz M, Giler GE, Harleen K, Sudhanshu PR, Duraisamy K, et al. Current Trends in Biomarkers for Traumatic Brain Injury. J Neurol Neurosur. 2020;12(4):86-94. DOI: https://doi.org/10.19080/OAJNN.2020.12.555842
Woodcock T, Morganti-Kossmann MC. The role of markers of inflammation in traumatic brain injury. Front Neurol. 2013;4:18. DOI: https://doi.org/10.3389/fneur.2013.00018
Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain J Neurol. 2013;136(Pt 1):28-42. DOI: https://doi.org/10.1093/brain/aws322
Shen LJ, Yang SB, Lv QW, Guo-Hai Z, Jing Z, Mi G, et al. High plasma adiponectin levels in patients with severe traumatic brain injury. Clin Chimica Acta Int J Clin Chem. 2014;427:37-41. DOI: https://doi.org/10.1016/j.cca.2013.09.047
Wang KY, Yu GF, Zhang ZY, Huang Q, Dong XQ. Plasma high-mobility group box 1 levels and prediction of outcome in patients with traumatic brain injury. Clin Chim Acta Int J Clin Chem. 2012;413(21-22):1737-41. DOI: https://doi.org/10.1016/j.cca.2012.07.002
Nam JW, Rissland OS, Koppstein D, Abreu-Goodger C, Jan CH, Agarwal V, et al. Global analyses of the effect of different cellular contexts on microRNA targeting. Molecular Cell. 2014;53(6):1031-43. DOI: https://doi.org/10.1016/j.molcel.2014.02.013
Redell JB, Moore AN, Ward NH, 3rd, Hergenroeder GW, Dash PK. Human traumatic brain injury alters plasma microRNA levels. J Neurotrauma. 2010;27(12):2147-56. DOI: https://doi.org/10.1089/neu.2010.1481
Bhomia M, Balakathiresan NS, Wang KK, Papa L, Maheshwari RK. A Panel of Serum MiRNA Biomarkers for the Diagnosis of Severe to Mild Traumatic Brain Injury in Humans. Scientific Rep. 2016;6:28148. DOI: https://doi.org/10.1038/srep28148
Marzano LAS, Batista JPT, de Abreu Arruda M, de Freitas Cardoso MG, Monteiro de Barros JLV, Moreira JM, et al. Traumatic brain injury biomarkers in pediatric patients: a systematic review. Neurosurgical Rev. 2022;45(1):167-97. DOI: https://doi.org/10.1007/s10143-021-01588-0
Fraser DD, Close TE, Rose KL, Roxanne W, Martin M, Catherine F, et al. Severe traumatic brain injury in children elevates glial fibrillary acidic protein in cerebrospinal fluid and serum. Pediat Crit Care Med. 2011;12(3):319-24. DOI: https://doi.org/10.1097/PCC.0b013e3181e8b32d
Hicks SD, Johnson J, Carney MC, Harry B, Robert PO, Andrea CL, et al. Overlapping MicroRNA Expression in Saliva and Cerebrospinal Fluid Accurately Identifies Pediatric Traumatic Brain Injury. J Neurotrauma. 2018;35(1):64-72. DOI: https://doi.org/10.1089/neu.2017.5111
Speer EM, Lee LK, Bourgeois FT, Daniel G, William WH Jr, Jonathan MD, et al. The state and future of pediatric research-an introductory overview: The state and future of pediatric research series. Pediat Res. 2023:1-5. DOI: https://doi.org/10.1038/s41390-022-02439-4