Attention-deficit hyperactivity disorder associated gene variants and their impact on neuroanatomy

Authors

  • Zayed M. Alnefaie College of Medicine, Al-Rayan Colleges, Al-Madinah, Saudi Arabia
  • Ahmed K. Almutairi Al-Rayan Colleges, Al-Madinah, Saudi Arabia
  • Nawaf M. Alharbi Al-Rayan Colleges, Al-Madinah, Saudi Arabia
  • Faris M. Almohammadi Al-Rayan Colleges, Al-Madinah, Saudi Arabia
  • Ayad K. Almetairi Al-Rayan Colleges, Al-Madinah, Saudi Arabia
  • Abdulmalik H. Hakeem Al-Rayan Colleges, Al-Madinah, Saudi Arabia
  • Basil F. Aljohani Al-Rayan Colleges, Al-Madinah, Saudi Arabia
  • Obai M. Raffah Al-Rayan Colleges, Al-Madinah, Saudi Arabia

DOI:

https://doi.org/10.18203/2394-6040.ijcmph20253756

Keywords:

Attention-deficit/hyperactivity disorder, Genetic variants, Neuroimaging, Dopamine pathways, Polygenic risk, Brain structure

Abstract

Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder characterized by complex genetic and neurobiological underpinnings, with heritability estimates suggesting that genetic factors account for up to 75% of the risk. Neuroimaging studies have consistently demonstrated structural and functional alterations in brain regions such as the frontal cortex, striatum, and cingulate areas among affected individuals. This narrative review synthesizes evidence from genome-wide association studies (GWAS), molecular genetic analyses, and neuroimaging research published between 2005 and 2023 to elucidate the associations between ADHD-related genetic variants and neuroanatomical or functional brain changes. Key genes implicated include DRD4, SLC6A3, COMT, CDH13, and ADGRL3, whose polymorphisms—such as the DRD4 7-repeat allele, SLC6A3 9R/10R variants, and COMT Val158Met—have been linked to altered dopaminergic signaling, reduced gray matter volume, cortical thinning, and disrupted connectivity in fronto-striatal and fronto-parietal networks. Subtype-specific neuroimaging findings further reveal that individuals with the combined subtype exhibit decreased pallidum volume and cingulate cortical thinning, whereas those with the Inattentive subtype demonstrate occipital thinning and insular abnormalities. Collectively, these findings reinforce that ADHD is a polygenic disorder with distinct neuroanatomical correlates underlying its phenotypic heterogeneity and variable treatment responses. Despite progress, inconsistencies in methodology, small effect sizes, and limited population diversity constrain current insights, underscoring the need for longitudinal, multimodal research to refine genotype–phenotype mapping and support precision medicine approaches in ADHD.

Metrics

Metrics Loading ...

References

Harpin VA. The effect of ADHD on the life of an individual, their family, and community from preschool to adult life. Arch Dis Child. 2005;90:2-7. DOI: https://doi.org/10.1136/adc.2004.059006

Fridman M, Banaschewski T, Sikirica V, Quintero J, Erder MH, Chen KS. Factors associated with caregiver burden among pharmacotherapy-treated children/adolescents with ADHD in the Caregiver Perspective on Pediatric ADHD survey in Europe. Neuropsychiatr Dis Treat. 2017;13:373-86. DOI: https://doi.org/10.2147/NDT.S121391

Salari N, Ghasemi H, Abdoli N, Rahmani A, Shiri MH, Hashemian AH, et al. The global prevalence of ADHD in children and adolescents: a systematic review and meta-analysis. Ital J Pediatr. 2023;49(1):48. DOI: https://doi.org/10.1186/s13052-023-01456-1

Drechsler R, Brem S, Brandeis D, Grünblatt E, Berger G, Walitza S, et al. ADHD: Current concepts and treatments in children and adolescents. Neuropediatrics. 2020;51(5):315-35. DOI: https://doi.org/10.1055/s-0040-1701658

Dark C, Homman-Ludiye J, Bryson-Richardson RJ. The role of ADHD-associated genes in neurodevelopment. Dev Biol. 2018;438(2):69-83. DOI: https://doi.org/10.1016/j.ydbio.2018.03.023

Faraone SV, Larsson H. Genetics of attention deficit hyperactivity disorder. Mol Psychiatry. 2019;24(4):562-75. DOI: https://doi.org/10.1038/s41380-018-0070-0

Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for ADHD. Nat Genet. 2019;51(1):63-75. DOI: https://doi.org/10.1038/s41588-018-0269-7

Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am J Hum Genet. 2017;101(1):5-22. DOI: https://doi.org/10.1016/j.ajhg.2017.06.005

Li JJ, He Q. Polygenic scores for ADHD: A meta-analysis. Res Child Adolesc Psychopathol. 2021;49(3):297-310. DOI: https://doi.org/10.1007/s10802-021-00774-4

Bray NJ, O’Donovan MC. The genetics of neuropsychiatric disorders. Br Med Bull. 2006;79-80:133-48.

Demontis D, Walters GB, Athanasiadis G, Walters R, Therrien K, Nielsen TT, et al. Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture, and implicate several cognitive domains. Nat Genet. 2023;55(2):198-208. DOI: https://doi.org/10.1016/j.euroneuro.2022.07.018

Yadav SK, Bhat AA, Hashem S, Nisar S, Kamal M, Syed N, et al. Genetic variations influence brain changes in patients with attention-deficit hyperactivity disorder. Transl Psychiatry. 2021;11(1):349. DOI: https://doi.org/10.1038/s41398-021-01473-w

Ding YC, Chi HC, Grady DL, Morishima A, Kidd JR, Kidd KK, et al. Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proc Natl Acad Sci U S A. 2002;99(1):309-14. DOI: https://doi.org/10.1073/pnas.012464099

Van Tol HH, Wu CM, Guan HC, Ohara K, Bunzow JR, Civelli O, et al. Multiple dopamine D4 receptor variants in the human population. Nature. 1992;358(6382):149-52. DOI: https://doi.org/10.1038/358149a0

Madras BK, Miller GM, Fischman AJ. The dopamine transporter and ADHD. Biol Psychiatry. 2005;57(11):1397-409. DOI: https://doi.org/10.1016/j.biopsych.2004.10.011

Yang B, Chan RC, Jing J, Li T, Sham P, Chen RY, et al. A meta-analysis of the 10-repeat allele of the dopamine transporter gene and ADHD. Am J Med Genet B Neuropsychiatr Genet. 2007;144B(4):541-50. DOI: https://doi.org/10.1002/ajmg.b.30453

Xiong Z, Yan J, Shi S. Val158Met polymorphisms of COMT and catecholaminergic neurotransmitter levels in ADHD. Medicine (Baltimore). 2021;100(49):e27867. DOI: https://doi.org/10.1097/MD.0000000000027867

Ziegler GC, Ehlis AC, Weber H, Vitale MR, Zöller JEM, Ku HP, et al. A Common CDH13 Variant Is Associated with Low Agreeableness and Neural Responses to Working Memory Tasks in ADHD. Genes (Basel). 2021;12(9):1356. DOI: https://doi.org/10.3390/genes12091356

Vidal OM, Vélez JI, Arcos-Burgos M. ADGRL3 variation and its role in ADHD and neurogenesis. Sci Rep. 2022;12(1):15922. DOI: https://doi.org/10.1038/s41598-022-20343-z

Acosta MT, Swanson J, Stehli A, Molina BS, Martinez AF, Arcos-Burgos M, et al. ADGRL3 (LPHN3) variants are associated with a refined phenotype of ADHD in the MTA study. Mol Genet Genomic Med. 2016;4(5):540-7. DOI: https://doi.org/10.1002/mgg3.230

Pironti VA, Lai MC, Muller U. Structural and functional brain alterations in ADHD patients and siblings. Curr Opin Neurobiol. 2015;30:106-11. DOI: https://doi.org/10.1016/j.conb.2014.11.007

Cortese S, Castellanos FX. Neuroimaging of ADHD: Perspectives for clinicians. Curr Psychiatry Rep. 2012;14(5):568-78. DOI: https://doi.org/10.1007/s11920-012-0310-y

Treatment-naïve versus chronically treated. Neurology. 2006;67(6):1023-7. DOI: https://doi.org/10.1212/01.wnl.0000237385.84037.3c

Cortese S, Kelly C, Chabernaud C, Proal E, Di Martino A, Milham MP, et al. A meta-analysis of 55 fMRI studies in ADHD. Am J Psychiatry. 2012;169(10):1038-55. DOI: https://doi.org/10.1176/appi.ajp.2012.11101521

Firouzabadi FD, Ramezanpour S, Firouzabadi MD, Yousem IJ, Puts NAJ, Yousem DM. Neuroimaging in Attention-Deficit/Hyperactivity Disorder: Recent Advances. AJR Am J Roentgenol. 2022;218(2):321-32. DOI: https://doi.org/10.2214/AJR.21.26316

Hoogman M, Muetzel R, Guimaraes JP, Shumskaya E, Mennes M, Zwiers MP, et al. Brain imaging of the cortex in ADHD: A coordinated analysis of large-scale clinical and population-based samples. Am J Psychiatry. 2019;176(7):531-42. DOI: https://doi.org/10.1176/appi.ajp.2019.18091033

Salavert J, Ramos-Quiroga JA, Moreno-Alcázar A, Caseras X, Palomar G, Radua J, et al. Functional Imaging Changes in the Medial Prefrontal Cortex in Adult ADHD. J Atten Disord. 2018;22(7):679-93. DOI: https://doi.org/10.1177/1087054715611492

Samea F, Soluki S, Nejati V, Zarei M, Cortese S, Eickhoff SB, et al. Brain alterations in children/adolescents with ADHD revisited: A neuroimaging meta-analysis of 96 structural and functional studies. Neurosci Biobehav Rev. 2019;100:1-8. DOI: https://doi.org/10.1016/j.neubiorev.2019.02.011

Mu S, Wu H, Zhang J, Chang C. Structural brain changes and associated symptoms of ADHD subtypes. Cereb Cortex. 2022;32(6):1152-8. DOI: https://doi.org/10.1093/cercor/bhab276

Norman LJ, Carlisi C, Lukito S, Hart H, Mataix-Cols D, Radua J, et al. Structural and Functional Brain Abnormalities in Attention-Deficit/Hyperactivity Disorder and Obsessive-Compulsive Disorder: A Comparative Meta-analysis. JAMA Psychiatry. 2016;73(8):815-25. DOI: https://doi.org/10.1001/jamapsychiatry.2016.0700

Downloads

Published

2025-11-17

How to Cite

Alnefaie, Z. M., Almutairi, A. K., Alharbi, N. M., Almohammadi, F. M., Almetairi, A. K., Hakeem, A. H., Aljohani, B. F., & Raffah, O. M. (2025). Attention-deficit hyperactivity disorder associated gene variants and their impact on neuroanatomy. International Journal Of Community Medicine And Public Health, 12(12), 5804–5815. https://doi.org/10.18203/2394-6040.ijcmph20253756

Issue

Section

Review Articles