Prakriti and neuroplasticity: integrative insights on cognitive health

Authors

  • Resmy Raj A. Department of Kriya Shareera, SDMIAH, Bangalore, Karnataka, India
  • Minakshi A. Randive Department of Kriya Shareera, R. S. M.’s Centre for Post Graduate Studies and Research in Ayurved of Tilak Ayurved Mahavidyalaya, Pune, Maharashtra, India

DOI:

https://doi.org/10.18203/2394-6040.ijcmph20254465

Keywords:

Neuroplasticity, Synaptogenesis, Prakriti, Cognitive adaptation, Integrative healthcare, Herbal medicine for cognitive health

Abstract

Ayurveda explains diversity of physical, physiological, and psychological attributes of individuals through the concept of prakriti, or body constitution. This variability extends to several cognitive brain functions like learning, memory etc. Modern neuroscience explains these cognitive traits through the concept of neuroplasticity, which refers to the structural and functional rewiring of neural connection as a result of experience and learning. This article aims to explore the relationship between prakriti and neuroplasticity and to understand the factors influencing neuroplasticity. It also aims to hypothesize an integrative framework that combines Ayurvedic and neuroscientific approaches to optimize cognitive health. There is only less empirical research works are available that systemically explores the connection between prakriti and neuroplasticity. Integrating prakriti-based insights with neuroplasticity offers a personalized, constitutionally aligned approach to cognitive health. Robust empirical validation through biomarkers, standardized protocols, and clinical evidence are essential for establishing a valid interdisciplinary result.

 

Metrics

Metrics Loading ...

References

Puderbaugh M, Emmady PD. Neuroplasticity. StatPearls. U. S. National Library of Medicine. 2023.

Sailor KA, Schinder AF, Lledo PM. Adult neurogenesis beyond the niche: its potential for driving brain plasticity. Curr Opin Neurobiol. 2017;42:111-7. DOI: https://doi.org/10.1016/j.conb.2016.12.001

Dan B. Neuroscience underlying rehabilitation: what is neuroplasticity? Dev Med Child Neurol. 2019;61(11):1240. DOI: https://doi.org/10.1111/dmcn.14341

Grafman J. Conceptualizing functional neuroplasticity. J Communication Disorders. 2000;33(4):345-56. DOI: https://doi.org/10.1016/S0021-9924(00)00030-7

Marzola P, Melzer T, Pavesi E, Gil-Mohapel J, Brocardo PS. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci. 2023;13(12):1610.

Mundkur N. Neuroplasticity in children. Indian J Pediat. 2005;72:855-7. DOI: https://doi.org/10.1007/BF02731115

Marzola P, Melzer T, Pavesi E, Gil-Mohapel J, Brocardo PS. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci. 2023;13(12):1610. DOI: https://doi.org/10.3390/brainsci13121610

Galván A. Neural plasticity of development and learning. Hum Brain Mapp. 2010;31(6):879-90. DOI: https://doi.org/10.1002/hbm.21029

Needham A, Barrett T, Peterman K. A pick-me-up for infants’ exploratory skills: Early simulated experiences reaching for objects using ‘sticky mittens’ enhances young infants’ object exploration skills. Infant Behav Dev. 2002;25(3):279-95. DOI: https://doi.org/10.1016/S0163-6383(02)00097-8

Rovee-Collier C, Hayne H. Memory in infancy and early childhood. In: Tulving E, Craik F, editors. The Oxford Handbook of Memory. New York (NY): Oxford University Press. 2000;267-82. DOI: https://doi.org/10.1093/oso/9780195122657.003.0017

Hyde KL, Lerch J, Norton A, Forgeard M, Winner E, Evans AC, Schlaug G. Musical training shapes structural brain development. J Neurosci. 2009;29(10):3019-25. DOI: https://doi.org/10.1523/JNEUROSCI.5118-08.2009

Schlaug G, Norton A, Overy K, Winner E. Effects of music training on the child's brain and cognitive development. Ann N Y Acad Sci. 2005;1060(1):219-30. DOI: https://doi.org/10.1196/annals.1360.015

Rueda MR, Rothbart MK, McCandliss BD, Saccomanno L, Posner MI. Training, maturation, and genetic influences on the development of executive attention. Proc Natl Acad Sci. 2005;102(41):14931-6. DOI: https://doi.org/10.1073/pnas.0506897102

Simos PG, Fletcher JM, Bergman E, Breier JI, Foorman BR, Castillo EM, et al. Dyslexia-specific brain activation profile becomes normal following successful remedial training. Neurology. 2002;58(8):1203-13. DOI: https://doi.org/10.1212/WNL.58.8.1203

Vance DE, Roberson AJ, McGuinness TM, Fazeli PL. How Neuroplasticity and Cognitive Reserve: Protect Cognitive Functioning. J Psychosoc Nurs Ment Health Serv. 2010;48(4):23-30. DOI: https://doi.org/10.3928/02793695-20100302-01

Chaddock-Heyman L, Erickson KI, Holtrop JL, Voss MW, Pontifex MB, Raine LB, et al. Aerobic fitness is associated with greater white matter integrity in children. Front Hum Neurosci. 2014;8:584. DOI: https://doi.org/10.3389/fnhum.2014.00584

Erickson KI, Prakash RS, Voss MW, Chaddock L, Hu L, Morris KS, et al. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus. 2009;19(10):1030-9. DOI: https://doi.org/10.1002/hipo.20547

El-Sayes J, Harasym D, Turco CV, Locke MB, Nelson AJ. Exercise-induced neuroplasticity: a mechanistic model and prospects for promoting plasticity. Neuroscientist. 2019;25(1):65-85. DOI: https://doi.org/10.1177/1073858418771538

de Sousa Fernandes MS, Ordônio TF, Santos GC, Santos LE, Calazans CT, Gomes DA, Santos TM. Effects of physical exercise on neuroplasticity and brain function: a systematic review in human and animal studies. Neural Plast. 2020;2020(1):8856621. DOI: https://doi.org/10.1155/2020/8856621

Driscoll HC, Serody L, Patrick S, Maurer J, Bensasi S, Houck PR, et al. Sleeping well, aging well: a descriptive and cross-sectional study of sleep in “successful agers” 75 and older. Am J Geriatr Psychiatry. 2008;16(1):74-82. DOI: https://doi.org/10.1097/JGP.0b013e3181557b69

Schmitt K, Holsboer-Trachsler E, Eckert A. BDNF in sleep, insomnia, and sleep deprivation. Ann Med. 2016;48:42-51. DOI: https://doi.org/10.3109/07853890.2015.1131327

Stee W, Peigneux P. Post-learning micro-and macro-structural neuroplasticity changes with time and sleep. Biochem Pharmacol. 2021;191:114369. DOI: https://doi.org/10.1016/j.bcp.2020.114369

Tovar-Moll F, Lent R. The various forms of neuroplasticity: Biological bases of learning and teaching. Prospects. 2016;46:199-213. DOI: https://doi.org/10.1007/s11125-017-9388-7

Li P, Legault J, Litcofsky KA. Neuroplasticity as a function of second language learning: Anatomical changes in the human brain. Cortex. 2014;58:301-24.

Herawati F, Wiyono N, Munawaroh S, Hastami Y. The Effect of Reading Activity on Verbal Fluency in Older Adults. Sains Medika: Jurnal Kedokteran Dan Kesehatan. 2021;12:34-9.

Begega A, Santín LJ, Galeano P, Cutuli D, Sampedro-Piquero P. Neuroplasticity and Healthy Lifestyle: How Can We Understand This Relationship? Neural Plast. 2017;2017:9506181. DOI: https://doi.org/10.1155/2017/9506181

Uddin N, Scott J, Nixon J, Patterson SD, Kidgell D, Pearce AJ, et al. The effects of exercise, heat-induced hypo-hydration and rehydration on blood–brain-barrier permeability, corticospinal and peripheral excitability. Eur J Appl Physiol. 2024;125(2):535-50. DOI: https://doi.org/10.1007/s00421-024-05616-x

Carreño FR, Walch JD, Dutta M, Nedungadi TP, Cunningham JT. BDNF-TrkB pathway mediates NMDA receptor NR2B subunit phosphorylation in the supraoptic nuclei following progressive dehydration. J Neuroendocrinol.2011;23(10):894. DOI: https://doi.org/10.1111/j.1365-2826.2011.02209.x

Raj AR, Randive MA. Prakṛti and its influence on cognitive brain functions and academic performance. J Indian Med Heritage. 2024;3(4):206-27. DOI: https://doi.org/10.4103/jimh.jimh_53_24

Shah NK, Shah SK, Patel SC. Retrospective analysis of influence of abhyang and svedan on neuroplasticity in cerebral palsy patients. J Res Educ Indian Med. 2023;7. DOI: https://doi.org/10.5455/JREIM.82-1684485768

Kumar V, Singh V, Rai S. Ayurveda daily regimen practices (Dinacharya): a scientific system model approach suitable as a quaternary prevention strategy for non-communicable diseases. TMR Integr Med. 2022;6:e22020. DOI: https://doi.org/10.53388/TMRIM202206020

Pimparkar VP, Chondikar VP, Visave VJ. Conceptual study of diet for different Prakriti. J Ayurveda Integrated Med Sci. 2019;4(06):147-53.

Joshi K, Kadam RS, Kharghar NM. Ayurveda’s approach of diet and lifestyle management based on doshaj prakriti. Ayurpub. 2014;IV(3):1270-8.

Tolahunase MR, Sagar R, Faiq M, Dada R. Yoga-and meditation-based lifestyle intervention increases neuroplasticity and reduces severity of major depressive disorder: A randomized controlled trial. Restor Neurol Neurosci. 2018;36(3):423-42. DOI: https://doi.org/10.3233/RNN-170810

Varambally S, Venkatasubramanian G, Govindaraj R, Shivakumar V, Mullapudi T, Christopher R, et al. Yoga and schizophrenia-a comprehensive assessment of neuroplasticity: Protocol for a single blind randomized controlled study of yoga in schizophrenia. Medicine. 2019;98(43):e17399. DOI: https://doi.org/10.1097/MD.0000000000017399

Villemure C, Čeko M, Cotton VA, Bushnell MC. Neuroprotective effects of yoga practice: age-, experience, and frequency-dependent plasticity. Front Hum Neurosci.2015;9:281. DOI: https://doi.org/10.3389/fnhum.2015.00281

Kadam MR, Indapurkar KV, Kadam RJ. Study of examination-related stress and its association with Manas Prakriti in male students. Shodhasamhitha. 2024;11:107-12.

Pimparkar VP, Chondikar VP, Visave VJ. Conceptual study of diet for different Prakriti. J Ayurveda Integrated Med Sci. 2019;4(06):147-53.

Rahman MW, Foxman M, Markowitz DM. Games as Cognitive Recreation: User Perspectives on Brain-Training Apps. Int J Hum Comput Interact. 2024;1:2312-22 DOI: https://doi.org/10.1080/10447318.2024.2319918

Johansen T, Matre M, Løvstad M, Lund A, Martinsen AC, Olsen A, et al. Virtual reality as a method of cognitive training of processing speed, working memory, and sustained attention in persons with acquired brain injury: a protocol for a randomized controlled trial. Trials. 2024;25(1):340. DOI: https://doi.org/10.1186/s13063-024-08178-7

Rossignoli-Palomeque T, Perez-Hernandez E, Gonzalez-Marques J. Brain training in children and adolescents: Is it scientifically valid? Front Psychol. 2018;9:565. DOI: https://doi.org/10.3389/fpsyg.2018.00565

Shahmoradi L, Mohammadian F, Rahmani Katigari M. A systematic review on serious games in attention rehabilitation and their effects. Behav Neurol. 2022;2022(1):2017975. DOI: https://doi.org/10.1155/2022/2017975

Li P, Legault J, Litcofsky KA. Neuroplasticity as a function of second language learning: Anatomical changes in the human brain. Cortex. 2014;58:301-24 DOI: https://doi.org/10.1016/j.cortex.2014.05.001

Krystal JH. Enhancing prolonged exposure therapy for posttraumatic stress disorder with D-cycloserine: further support for treatments that promote experience-dependent neuroplasticity. Biol Psychiatry. 2012;71(11):932-4. DOI: https://doi.org/10.1016/j.biopsych.2012.03.031

Krystal JH. Neuroplasticity as a target for the pharmacotherapy of psychiatric disorders: new opportunities for synergy with psychotherapy. Biol Psychiatry. 2007;62(8):833-4. DOI: https://doi.org/10.1016/j.biopsych.2007.08.017

Krystal JH, Tolin DF, Sanacora G, Castner SA, Williams GV, Aikins DE, et al. Neuroplasticity as a target for the pharmacotherapy of anxiety disorders, mood disorders, and schizophrenia. Drug Discov Today. 2009;14(13-14):690-7. DOI: https://doi.org/10.1016/j.drudis.2009.05.002

Keeler JL, Kan C, Treasure J, Himmerich H. Novel treatments for anorexia nervosa: insights from neuroplasticity research. Eur Eat Disord Rev. 2024;32(6):1069-84. DOI: https://doi.org/10.1002/erv.3039

Månsson KN, Salami A, Carlbring P, Boraxbekk CJ, Andersson G, Furmark T. Structural but not functional neuroplasticity one year after effective cognitive behaviour therapy for social anxiety disorder. Behav Brain Res. 2017;318:45-51. DOI: https://doi.org/10.1016/j.bbr.2016.11.018

Månsson KN, Salami A, Frick A, Carlbring P, Andersson G, Furmark T, et al. Neuroplasticity in response to cognitive behavior therapy for social anxiety disorder. Transl Psychiatry. 2016;6(2):e727-. DOI: https://doi.org/10.1038/tp.2015.218

Kricheldorff J, Göke K, Kiebs M, Kasten FH, Herrmann CS, Witt K, et al. Evidence of neuroplastic changes after transcranial magnetic, electric, and deep brain stimulation. Brain Sci. 2022;12(7):929. DOI: https://doi.org/10.3390/brainsci12070929

Rozisky JR, Antunes LD, Brietzke AP, de Sousa AC, Caumo W. Transcranial direct current stimulation and neuroplasticity. Transcranial direct current stimulation (tDCS): Emerging Used, Safety and Neurobiological Effects. New York: Nova Science Publishers Inc. 2015;1-26.

Suppa A, Asci F, Guerra A. Transcranial magnetic stimulation as a tool to induce and explore plasticity in humans. Handbook of Clinical Neurology. 2022;184:73-89. DOI: https://doi.org/10.1016/B978-0-12-819410-2.00005-9

Mark VW, Taub E, Morris DM. Neuroplasticity and constraint-induced movement therapy. Eura Medicophys. 2006;42(3):269.

Uswatte G, Taub E. Constraint-induced movement therapy: a method for harnessing neuroplasticity to treat motor disorders. Prog Brain Res. 2013;207:379-401. DOI: https://doi.org/10.1016/B978-0-444-63327-9.00015-1

Sterling C, Taub E, Davis D, Rickards T, Gauthier LV, Griffin A, et al. Structural neuroplastic change after constraint-induced movement therapy in children with cerebral palsy. Pediatrics. 2013;131(5):e1664-9. DOI: https://doi.org/10.1542/peds.2012-2051

Suliman NA, Mat Taib CN, Mohd Moklas MA, Adenan MI, Hidayat Baharuldin MT, Basir R. Establishing natural nootropics: recent molecular enhancement influenced by natural nootropic. Evid Based Complement Alternat Med. 2016;2016(1):4391375. DOI: https://doi.org/10.1155/2016/4391375

Patel J, King A, Malempati M, Patel M. Understanding nootropics and cognitive enhancement: mechanism of action and ethical considerations. Health Open Res. 2024;6:2. DOI: https://doi.org/10.12688/healthopenres.13504.1

Voss P, Thomas ME, Cisneros-Franco JM, de Villers-Sidani É. Dynamic brains and the changing rules of neuroplasticity: implications for learning and recovery. Front Psychol. 2017;8:274878. DOI: https://doi.org/10.3389/fpsyg.2017.01657

Vidal R, Pilar-Cuellar F, dos Anjos S, Linge R, Treceno B, Ines Vargas V, et al. New strategies in the development of antidepressants: towards the modulation of neuroplasticity pathways. Curr Pharm Des. 2011;17(5):521-3. DOI: https://doi.org/10.2174/138161211795164086

Downloads

Published

2025-12-31

How to Cite

A., R. R., & Randive, M. A. (2025). Prakriti and neuroplasticity: integrative insights on cognitive health. International Journal Of Community Medicine And Public Health, 13(1), 491–504. https://doi.org/10.18203/2394-6040.ijcmph20254465

Issue

Section

Review Articles