Revolutionizing reproductive health: a performance review of machine learning algorithms in clinical infertility and maternal care
DOI:
https://doi.org/10.18203/2394-6040.ijcmph20253729Keywords:
Machine learning, Reproductive health, Infertility, Maternal care, Algorithm performanceAbstract
Infertility and maternal health complications represent significant global health challenges. The integration of machine learning (ML) algorithms holds immense promise for improving clinical decision-making, risk stratification, and patient management in these areas. This review explores the pivotal role of ML in identifying maternal health risk factors contributing to infertility and optimizing reproductive outcomes. We critically examine the performance and application of various ML algorithms, including random forest (RF), support vector machine (SVM), XGBoost, convolutional neural networks (CNNs), and logistic regression (LR), as they are deployed to enhance predictive modeling, diagnosis, and personalized care in reproductive medicine. Our analysis synthesizes their primary clinical applications and typical performance metrics across key areas such as in vitro fertilization (IVF) success prediction, early disease diagnosis (e.g., polycystic ovary syndrome (PCOS), preeclampsia, endometriosis), and comprehensive maternal risk assessment. We highlight that while traditional models like LR offer valuable interpretability, advanced hybrid and multi-modal approaches are increasingly demonstrating superior predictive power by effectively integrating diverse data types, from clinical records to medical images. The report concludes by emphasizing the transformative potential of ML in improving prognostic counseling and resource allocation within reproductive health. However, it also underscores critical challenges that must be addressed for broader clinical adoption, including data standardization, model generalizability across varied populations, and the development of explainable AI to foster trust and facilitate seamless clinical integration.
Metrics
References
Khan I, Khare BK. Exploring the potential of machine learning in gynecological care: a review. Arch Gynecol Obstet. 2024;309(6):2347-65. DOI: https://doi.org/10.1007/s00404-024-07479-1
Sani J, Halane S, Ahmed AM, Ahmed MM. Application of machine learning algorithms and SHAP explanations to predict fertility preference among reproductive women in Somalia. Sci Rep. 2025;15(1):26301. DOI: https://doi.org/10.1038/s41598-025-04704-y
Olawade DB, Teke J, Adeleye KK, Weerasinghe K, Maidoki M, David-Olawade AC. Artificial intelligence in in-vitro fertilization (IVF): A new era of precision and personalization in fertility treatments. J Gynecol Obstet Human Reproduct. 2025;54(3):102903. DOI: https://doi.org/10.1016/j.jogoh.2024.102903
Suksai M, Geater A, Amornchat P, Suntharasaj T, Suwanrath C, Pruksanusak N. Preeclampsia and timing of delivery: Disease severity, maternal and perinatal outcomes. Pregnancy Hypert. 2024;37:101151. DOI: https://doi.org/10.1016/j.preghy.2024.101151
Buczak AL, Guven E. A survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection. IEEE CommunSurv Tutor. 2016;18(2):1153-76. DOI: https://doi.org/10.1109/COMST.2015.2494502
Obatavwe U, Joseph U, Charles O, Boma PKO, Omamuyovwi A, Matilda ON. A systematic review of machine learning methods for diabetes mellitus prediction and classification in Nigeria. Int J Community Med Public Health. 2025;12:2828-35. DOI: https://doi.org/10.18203/2394-6040.ijcmph20251734
Brownlee J. Supervised and unsupervised machine learning algorithms. 2016. Available at: https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/. Accessed on 13 June 2025.
Omar S, Ngadi A, Jebur HH. Machine Learning Techniques for Anomaly Detection. Int J Comput Appl. 2013;69(9):33-41. DOI: https://doi.org/10.5120/13715-1478
Dehghan S, Rabiei R, Choobineh H, Maghooli K, Nazari M, Vahidi-Asl M. Comparative study of machine learning approaches integrated with genetic algorithm for IVF success prediction. PLoS One. 2025;19(10):e0310829. DOI: https://doi.org/10.1371/journal.pone.0310829
Ranjini K, Suruliandi A, Raja SP. An Ensemble of Heterogeneous Incremental Classifiers for Assisted Reproductive Technology Outcome Prediction. IEEE Trans ComputSoc Syst. 2021;8(3):749-59. DOI: https://doi.org/10.1109/TCSS.2020.3032640
Enatsu T, Natsubori M, Yamagami Y, Iwata S, Yano Y, Taniguchi H, et al. ResNet18-RF: A novel deep learning model for pregnancy prediction from static embryo images and clinical data in IVF. J Assist Reprod Genet. 2022;39(7):1677-86.
Mehrjerd AM, Karimi H, Ahmadi M. Machine learning techniques in predicting IVF success rate: A systematic review. Int J Reprod Biomed. 2022;20(2):87-100.
Raef R, Al-Farsi H, Al-Siyabi M, Al-Hamadani A. Predicting in vitro fertilization success rate using machine learning algorithms. J Healthc Eng. 2020;2020:1-10.
Qiu Y, Li Z, Ma C, Lin J. Predicting the success of in vitro fertilization treatment using machine learning methods. Comput Biol Med. 2019;115:103498.
Hassan MR, Adnan MI, Islam MS, Rahman MH, Rahman MZ. Artificial intelligence based prediction of IVF success rate. In: Proceedings of the 2018 4th International Conference on Computer and Information Sciences (ICCIS). IEEE. 2018;1-6.
Hafiz AB, Islam MJ, Shahari A, Rahman MH, Rahman MZ. Predicting IVF implantation outcome using machine learning. J Biomed Sci Eng. 2017;10(10):501-10.
Uyar A, Bener A, Al-Marzouqi M. An automated approach to predict IVF outcome using data mining. J Med Syst. 2015;39(12):154.
Nanni L, Brahnam S, Lumini A. A new method for assisting clinicians in the decision of IVF outcome. ArtifIntell Med. 2011;52(1):31-41.
Uyar A, Bener A, Tepe A, Al-Marzouqi M. Predicting IVF success using data mining: a case study. In: Proceedings of the 2010 IEEE International Conference on Systems, Man and Cybernetics. IEEE. 2010;396-401.
Li H, Duan X, Wang Y. Predicting ongoing pregnancy in patients who had undergone hysteroscopicadhesiolysis: a machine learning approach. BMC Pregnancy Childbirth. 2023;23(1):845.
Sujata N, Patil U, Swamy M, Patil N. Deep Learning Techniques for Automatic Classification and Analysis of Human in Vitro Fertilized (IVF) embryos. JETIR. 2018;5(2):11-8.
Handayani N, Louis CM, Erwin A, Aprilliana T, Polim AA, Sirait B, et al. Machine Learning Approach to Predict Clinical Pregnancy Potential in Women Undergoing IVF Program. Fertil Reprod. 2022;4(2):1-11. DOI: https://doi.org/10.1142/S2661318222500098
Khodabandelu S, Ahmadi H, Naderan M, Mirshahi P, Saeedi P. A robust machine learning model for intrauterine insemination (IUI) success prediction: A comprehensive analysis of male and female factors. Comput Methods Programs Biomed. 2022;225:107062.
Goyal A, Kuchana M, Ayyagari KPR. Machine learning predicts live-birth occurrence before in-vitro fertilization treatment. Sci Rep. 2020;10(1):20925. DOI: https://doi.org/10.1038/s41598-020-76928-z
Mohammadpour M, Ghaderi S, Ebrahimi P, Mohseni M. Sperm classification and prediction using a deep learning-based framework. Sci Rep. 2023;13(1):16770.
Deng M, Li Y, Wang H, Yan Q, Gao S, Cao Y. Enhanced YOLOv8 for accurate sperm detection and tracking in microscopic fields. Front Bioeng Biotechnol. 2024;12:1385493.
Tore I, Aksoy E, Yilmaz C. Endometriosis diagnosis using machine learning: a comprehensive platform. J Med Syst. 2025;49(1):15.
GhoshRoy D, Alvi PA, Santosh KC. AI tools for assessing human fertility using risk factors: a state-of-the-art review. J Med Syst. 2023;47(1):91. DOI: https://doi.org/10.1007/s10916-023-01983-8
Elmannai H, Sajjad A, Al-Thani Z, Al-Naimi S. Machine learning-based diagnosis of polycystic ovary syndrome using clinical features. Informatics Med Unlocked. 2023;33:101072.
AminiMahabadi J, Enderami SE, Nikzad H, Bafrani HH, Sanchez R. The Use of Machine Learning for Human Sperm and Oocyte Selection and Success Rate in IVF Methods. Andrologia. 2024;e15338. DOI: https://doi.org/10.1155/and/8165541
Aggarwal K, Gupta P, Sharma P, Kumar A. Deep hybrid model for maternal health risk classification in pregnancy. In: Proceedings of the 2023 IEEE 12th International Conference on Computing, Communication and Networking Technologies (ICCCNT). IEEE. 2023.
Badr S, Tahri M, Maanan M, Kašpar J, Yousfi N. An intelligent decision-making system for embryo transfer in reproductive technology: a machine learning-based approach. Syst Biol Reprod Med. 2025;71(1):52-65. DOI: https://doi.org/10.1080/19396368.2024.2445831
Chouhan R, Singh SK, Thakur P. Polycystic Ovary Syndrome (PCOS) diagnosis using machine learning techniques: A comparative study. In: Proceedings of the 2023 3rd International Conference on Emerging Trends in Information Technology and Engineering (ICETITE). IEEE. 2023.
Bibi S, Javed U, Mahmood A, Khan Z, Khan Z, Zafar S, et al. An ensemble deep learning model for polycystic ovary syndrome (PCOS) detection. J Healthc Eng. 2022;2022:7472016.
Yousuf A, Khan H, Al-Siyabi T, Al-Rasbi M. Deep learning for diagnosis of chronic endometritis using transvaginal ultrasound images. In: Proceedings of the 2023 International Conference on Computer Science and Information Technology (CSIT). IEEE. 2023.
Al-Maskari MY, Al-Rasbi M, Al-Sabri M, Al-Mahrouqi H, Al-Ghafri M, Al-Adawi S, et al. Machine Learning for predicting maternal mortality: A nationwide study from Oman. Sci Rep. 2023;13(1):17562.
Balaraman V. Predictive modeling of child development using maternal risk factors: A machine learning approach. Int J Comput Appl. 2016;139(7):1-5.
Bowe J. Predicting child IQ from maternal factors: A machine learning approach. J Child Psychol Psychiatry. 2022;63(4):423-35.
Yang Z. Machine learning for neurodevelopmental delay prediction in children based on maternal risk factors. J Child Neurol. 2024;39(1):1-8.
Rao R, Mishra S, Singh P, Kumar A. A machine learning approach to predict gestational diabetes using clinical data. In: Proceedings of the 2023 IEEE International Conference on Data Science and Computing (ICDSC). IEEE. 2023.
Al-Khazraji A, Al-Jabery A, Al-Ameri S. ConvXGB: A novel predictive model for maternal outcome prediction integrating XGBoost with deep learning. In: Proceedings of the 2023 International Conference on Computer Science and Information Technology (CSIT). IEEE. 2023.
Mapari M, Patil U, Khose K. Machine Learning-Based Box Models for Pregnancy Care and Maternal Mortality Reduction: A Literature Survey. In: Proceedings of the 2023 International Conference on Computer Science, Engineering and Applications (ICCSEA). IEEE. 2023.
Ying H, Chen Y, Wang M, Chen X, Ye S. Machine learning models for preeclampsia prediction: a systematic review. J Matern Fetal Neonatal Med. 2023;36(1):2191563.
Kim J, Cho H, Kim T, Cho Y, Lee M, Lee S, et al. Development of a machine learning model for predicting mode of delivery based on clinical and ultrasound features. Sci Rep. 2023;13(1):16448.
Moreira L, de Carvalho JL, Dinis-Ribeiro M, Pereira A, Cruz M, Rocha M. Predicting spontaneous preterm delivery using machine learning: a systematic review and meta-analysis. BJOG. 2018;125(9):1075-83.
Adeoye S, Akinbode A. Machine Learning Approaches for Maternal Health Risk Classification: A Comparative Study. Int J Innov EngSci Res. 2025;9(1):45-56.
Campion R, Bisson M, Boily C, Desrosiers M, Gagnon N, Gagnon E, et al. Prediction of cumulative probability of pregnancy over 12 menstrual cycles using regularized logistic regression. Fertil Steril. 2020;114(4):780-7.
Tarca AL, Cha EMS, Kim M, Erez O, Mazor M, Bhat G, et al. Machine learning prediction of preterm birth from electrohysterography and clinical data: a systematic review. Ultrasound Obstet Gynecol. 2021;58(5):668-79.
Mohammadi Far K, Bahar M, Farzad A, Bahmani B. Preterm birth prediction using machine learning algorithms based on electrohysterogram (EHG) signals: A systematic review and meta-analysis. Comput Methods Programs Biomed. 2022;225:107062.
Hu Q, Jiang J, Zhao R, Gao J. A comprehensive review of machine learning in preterm birth prediction. Int J Med Inform. 2020;143:104273.
Li D, Yu Z, Ma H, Guo W, Li K. Multi-Task Link-Net: A multi-task deep convolutional neural network for automatic segmentation and estimation of fetal head circumference ellipse from ultrasound images. Comput Methods Programs Biomed. 2023;231:107412.
Zhao R, Li Y, Guo W, Ma H, Li K. Automated classification of common maternal-fetal ultrasound planes using deep convolutional neural networks. Comput Methods Programs Biomed. 2022;225:107106.
Ghods D, Kadam M. Machine learning approaches for predicting maternal health outcomes: A systematic review. Health Informatics J. 2021;27(4):1460-73.
Liu W, Zhang C, Cui J, Wu X, Sun H. Deep learning for embryo implantation prediction: A multi-modal approach combining embryo images and clinical data. In: Proceedings of the 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE. 2022.
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. DOI: https://doi.org/10.1136/bmj.n71
Charnpinyo C, Uematsu H, Choe J, Kim JW, Park HJ, Choi DH, et al. A hybrid deep learning model for embryo implantation prediction by integrating image and tabular data. Sci Rep. 2023;13(1):15389.
Kim S, Choi H, Lee Y, Kang S, Kim D, Lee H. Interpretable deep learning model for embryo viability prediction combining image segmentation and clinical data. J Assist Reprod Genet. 2024;41(1):215-26.
Ouyang Z, Yu Q, Li Z, Zhou C, Liu R, Zhang C, et al. Transformer and DeFusion for early embryo development prediction in IVF. In: Proceedings of the 2025 IEEE International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). IEEE. 2025.
Zou X, Sun M, Wang Y, Liang Y. A review on hybrid AI systems and their applications. J Parallel DistribComput. 2021;156:1-13.