Current perspectives on the pathogenesis, molecular pathways, and therapeutic targets in diabetic retinopathy

Authors

  • Asra Warees Department of Ophthalmology, J.N. Medical College, Paramedical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India https://orcid.org/0009-0001-2683-8050
  • Afreen Abbas Department of Ophthalmology, J.N. Medical College, Paramedical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India https://orcid.org/0009-0007-9249-101X
  • Mudassir Alam Department of Biological Sciences, Indian Biological Sciences and Research Institute (IBRI), Noida, Uttar Pradesh, India
  • Kashif Abbas Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India https://orcid.org/0000-0002-1337-6061

DOI:

https://doi.org/10.18203/2394-6040.ijcmph20254461

Keywords:

Gene editing, Hyperglycemia, ROS, PKC inhibitors, VEGF, Vascular leakage

Abstract

Diabetic retinopathy (DR) is a serious sight-threatening complication that occurs due to constant hyperglycemia. It is the most common and leading cause of vision impairment worldwide. The development and progression of DR involve a complex network of genetic and environmental factors. Vascular inflammatory pathways, oxidative stress and epigenetic modifications have been linked to the development of diabetic mediated retinopathy. Candidate gene studies have implicated variants in genes involved in glucose metabolism such as (ALR2), vascular regulation (VEGF) are closely associated with DR susceptibility. Hyperglycemia triggers several factors such as polyol pathway, advanced glycation end-products (AGEs) formation, activation of protein kinase C (PKC), dysregulation of the renin-angiotensin system (RAS). These pathways collectively induce oxidative stress, inflammation, vascular dysfunction and pathological angiogenesis that further intensify microvascular lesions resulting in DR pathogenesis. Emerging therapeutic strategies present anti-VEGF agents, PKC inhibitors, and drugs modulating RAS system. In addition, targeted medicine based on genetic risk profiling and novel gene therapy approaches hold great promise in DR treatment. Further research integrating multi-omics data, gene-environment interactions, and precise translational studies are required for improving DR management and associated risk factor.        

Metrics

Metrics Loading ...

References

Zegeye AF, Temachu YZ, Mekonnen CK. Prevalence and factors associated with Diabetes retinopathy among type 2 diabetic patients at Northwest Amhara Comprehensive Specialized Hospitals, Northwest Ethiopia 2021. BMC Ophthalmol. 2023;23(1):9. DOI: https://doi.org/10.1186/s12886-022-02746-8

Roy S, Kim D. Retinal capillary basement membrane thickening: Role in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res. 2021;82:100903. DOI: https://doi.org/10.1016/j.preteyeres.2020.100903

Dănilă AI, Ghenciu LA, Stoicescu ER, Bolintineanu SL, Iacob R, Săndesc MA, et al. Aldose Reductase as a Key Target in the Prevention and Treatment of Diabetic Retinopathy: A Comprehensive Review. Biomedicines. 2024;12(4). DOI: https://doi.org/10.3390/biomedicines12040747

Donnelly R, Idris I, Forrester JV. Protein kinase C inhibition and diabetic retinopathy: a shot in the dark at translational research. Br J Ophthalmol. 2004;88(1):145-51. DOI: https://doi.org/10.1136/bjo.88.1.145

Nobe K, Takenouchi Y, Kasono K, Hashimoto T, Honda K. Two types of overcontraction are involved in intrarenal artery dysfunction in type II diabetic mouse. J Pharmacol Exp Ther. 2014;351(1):77-86. DOI: https://doi.org/10.1124/jpet.114.216747

Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020;37:101799. DOI: https://doi.org/10.1016/j.redox.2020.101799

Haque F, Showkat B, Rasheed K, Ansari I, Pawar V, Alam M, et al. Identification and Screening of Bioactive Phytocompounds against Matrix Metalloproteinase-9, Targeting Cancer Cell Proliferation and Angiogenesis: Phytocompounds Targeting MMP-9 in Cancer. Iranian Journal of Pharmaceutical Sciences. 2025;21(1):323-43.

Tewari S, Zhong Q, Santos JM, Kowluru RA. Mitochondria DNA replication and DNA methylation in the metabolic memory associated with continued progression of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2012;53(8):4881-8. DOI: https://doi.org/10.1167/iovs.12-9732

Liu CH, Huang S, Britton WR, Chen J. MicroRNAs in Vascular Eye Diseases. Int J Mol Sci. 2020;21(2). DOI: https://doi.org/10.3390/ijms21020649

Pradhan P, Upadhyay N, Tiwari A, Singh LP. Genetic and epigenetic modifications in the pathogenesis of diabetic retinopathy: a molecular link to regulate gene expression. New Front Ophthalmol. 2016;2(5):192-204. DOI: https://doi.org/10.15761/NFO.1000145

Warees A, Faraz M, Alam M, Kausar S. Assessment of quality of life in patients with epiphora: a cross-sectional study using a structured clinical performa. Archives of Ophthalmological Research. 2025;2:63-8. DOI: https://doi.org/10.51271/AOR-0039

Fathimah FSN, Ari Widjaja S, Sasono W, Yustiarini I, Firmansjah M, Prakosa AD, et al. Retinal vessel tortuosity and fractal dimension in diabetic retinopathy. Int J Retina Vitreous. 2025;11(1):64. DOI: https://doi.org/10.1186/s40942-025-00688-z

Zhao Y, Singh RP. The role of anti-vascular endothelial growth factor (anti-VEGF) in the management of proliferative diabetic retinopathy. Drugs Context. 2018;7:212532. DOI: https://doi.org/10.7573/dic.212532

Tan TE, Fenner BJ, Barathi VA, Tun SBB, Wey YS, Tsai ASH, et al. Gene-Based Therapeutics for Acquired Retinal Disease: Opportunities and Progress. Front Genet. 2021;12:795010. DOI: https://doi.org/10.3389/fgene.2021.795010

15. Yan LJ. Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Model Exp Med. 2018;1(1):7-13. DOI: https://doi.org/10.1002/ame2.12001

16. Mengstie MA, Chekol Abebe E, Behaile Teklemariam A, Tilahun Mulu A, Agidew MM, Teshome Azezew M, et al. Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications. Front Mol Biosci. 2022;9:1002710. DOI: https://doi.org/10.3389/fmolb.2022.1002710

Cepas V, Collino M, Mayo JC, Sainz RM. Redox Signaling and Advanced Glycation Endproducts (AGEs) in Diet-Related Diseases. Antioxidants (Basel). 2020;9(2). DOI: https://doi.org/10.3390/antiox9020142

Nonaka A, Kiryu J, Tsujikawa A, Yamashiro K, Miyamoto K, Nishiwaki H, et al. PKC-beta inhibitor (LY333531) attenuates leukocyte entrapment in retinal microcirculation of diabetic rats. Invest Ophthalmol Vis Sci. 2000;41(9):2702-6.

Konior A, Schramm A, Czesnikiewicz-Guzik M, Guzik TJ. NADPH oxidases in vascular pathology. Antioxid Redox Signal. 2014;20(17):2794-814. DOI: https://doi.org/10.1089/ars.2013.5607

Cook-Mills JM, Marchese ME, Abdala-Valencia H. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxid Redox Signal. 2011;15(6):1607-38. DOI: https://doi.org/10.1089/ars.2010.3522

Kang Q, Dai H, Jiang S, Yu L. Advanced glycation end products in diabetic retinopathy and phytochemical therapy. Front Nutr. 2022;9:1037186. DOI: https://doi.org/10.3389/fnut.2022.1037186

Zhang C. The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol. 2008;103(5):398-406. DOI: https://doi.org/10.1007/s00395-008-0733-0

Kashif A, Mudassir A, Mohd Tanjeem R, Mohd S, Hisham A, Farhan F, et al. Computational Screening of Natural Compounds Targeting VEGFR-2 for Anti-Angiogenic Therapy. Current Science, Engineering and Technology. 2025;5:1-27.

Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005;69(Suppl3):4-10. DOI: https://doi.org/10.1159/000088478

Aasbjerg K, Nørgaard CH, Vestergaard N, Søgaard P, Køber L, Weeke P, et al. Risk of diabetes among related and unrelated family members. Diabetes Res Clin Pract. 2020;160:107997. DOI: https://doi.org/10.1016/j.diabres.2019.107997

Hietala K, Forsblom C, Summanen P, Groop PH. Heritability of proliferative diabetic retinopathy. Diabetes. 2008;57(8):2176-80. DOI: https://doi.org/10.2337/db07-1495

Agarwal A, Soliman MK, Sepah YJ, Do DV, Nguyen QD. Diabetic retinopathy: variations in patient therapeutic outcomes and pharmacogenomics. Pharmgenomics Pers Med. 2014;7:399-409. DOI: https://doi.org/10.2147/PGPM.S52821

Huang YC, Lin JM, Lin HJ, Chen CC, Chen SY, Tsai CH, et al. Genome-wide association study of diabetic retinopathy in a Taiwanese population. Ophthalmology. 2011;118(4):642-8. DOI: https://doi.org/10.1016/j.ophtha.2010.07.020

Lee YJ, Jeon HY, Lee AJ, Kim M, Ha KS. Dopamine ameliorates hyperglycemic memory-induced microvascular dysfunction in diabetic retinopathy. Faseb j. 2022;36(12):e22643. DOI: https://doi.org/10.1096/fj.202200865R

Dagher Z, Park YS, Asnaghi V, Hoehn T, Gerhardinger C, Lorenzi M. Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. Diabetes. 2004;53(9):2404-11. DOI: https://doi.org/10.2337/diabetes.53.9.2404

Lorenzi M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Exp Diabetes Res. 2007;2007:61038. DOI: https://doi.org/10.1155/2007/61038

Lin L, Park S, Lakatta EG. RAGE signaling in inflammation and arterial aging. Front Biosci (Landmark Ed). 2009;14(4):1403-13. DOI: https://doi.org/10.2741/3315

Ding X, Sun Z, Guo Y, Tang W, Shu Q, Xu G. Inhibition of NF-κB ameliorates aberrant retinal glia activation and inflammatory responses in streptozotocin-induced diabetic rats. Ann Transl Med. 2023;11(5):197. DOI: https://doi.org/10.21037/atm-22-2204

34. Mustafa M, Ahmad R, Tantry IQ, Ahmad W, Siddiqui S, Alam M, et al. Apoptosis: A Comprehensive Overview of Signaling Pathways, Morphological Changes, and Physiological Significance and Therapeutic Implications. Cells. 2024;13(22). DOI: https://doi.org/10.3390/cells13221838

Zhang SX, Sanders E, Fliesler SJ, Wang JJ. Endoplasmic reticulum stress and the unfolded protein responses in retinal degeneration. Exp Eye Res. 2014;125:30-40. DOI: https://doi.org/10.1016/j.exer.2014.04.015

Bursell SE, Takagi C, Clermont AC, Takagi H, Mori F, Ishii H, et al. Specific retinal diacylglycerol and protein kinase C beta isoform modulation mimics abnormal retinal hemodynamics in diabetic rats. Invest Ophthalmol Vis Sci. 1997;38(13):2711-20.

Park JY, Takahara N, Gabriele A, Chou E, Naruse K, Suzuma K, et al. Induction of endothelin-1 expression by glucose: an effect of protein kinase C activation. Diabetes. 2000;49(7):1239-48. DOI: https://doi.org/10.2337/diabetes.49.7.1239

Chakravarthy U, Hayes RG, Stitt AW, McAuley E, Archer DB. Constitutive nitric oxide synthase expression in retinal vascular endothelial cells is suppressed by high glucose and advanced glycation end products. Diabetes. 1998;47(6):945-52. DOI: https://doi.org/10.2337/diabetes.47.6.945

Harhaj NS, Felinski EA, Wolpert EB, Sundstrom JM, Gardner TW, Antonetti DA. VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability. Invest Ophthalmol Vis Sci. 2006;47(11):5106-15. DOI: https://doi.org/10.1167/iovs.06-0322

Luo X, Xue D. Potential mechanisms of epigenetic regulation in diabetic retinopathy from the perspectives of multi-omics. Diabetol Metab Syndr. 2025;17(1):155. DOI: https://doi.org/10.1186/s13098-025-01723-7

Zhong Q, Kowluru RA. Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon. J Cell Biochem. 2010;110(6):1306-13. DOI: https://doi.org/10.1002/jcb.22644

Gong Q, Su G. Roles of miRNAs and long noncoding RNAs in the progression of diabetic retinopathy. Biosci Rep. 2017;37(6). DOI: https://doi.org/10.1042/BSR20171157

He L, He X, Lowe SW, Hannon GJ. microRNAs join the p53 network--another piece in the tumour-suppression puzzle. Nat Rev Cancer. 2007;7(11):819-22. DOI: https://doi.org/10.1038/nrc2232

Yan B, Yao J, Liu JY, Li XM, Wang XQ, Li YJ, et al. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res. 2015;116(7):1143-56. DOI: https://doi.org/10.1161/CIRCRESAHA.116.305510

Cheema AA, Cheema HR. Diabetic Macular Edema Management: A Review of Anti-Vascular Endothelial Growth Factor (VEGF) Therapies. Cureus. 2024;16(1):e52676. DOI: https://doi.org/10.7759/cureus.52676

Shih CJ, Chu H, Ou SM, Chen YT. Comparative effectiveness of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on major adverse cardiac events in patients with newly diagnosed type 2 diabetes: a nationwide study. Int J Cardiol. 2015;199:283-9. DOI: https://doi.org/10.1016/j.ijcard.2015.07.053

Walton C, Ryder R, Girach A. Protein kinase C inhibition in diabetic retinopathy and microvascular disease. Practical Diabetes International. 2007;24(5):263-8. DOI: https://doi.org/10.1002/pdi.1116

Kawano T, Inokuchi J, Eto M, Murata M, Kang JH. Activators and Inhibitors of Protein Kinase C (PKC): Their Applications in Clinical Trials. Pharmaceutics. 2021;13(11). DOI: https://doi.org/10.3390/pharmaceutics13111748

Tamura H, Miyamoto K, Kiryu J, Miyahara S, Katsuta H, Hirose F, et al. Intravitreal injection of corticosteroid attenuates leukostasis and vascular leakage in experimental diabetic retina. Invest Ophthalmol Vis Sci. 2005;46(4):1440-4. DOI: https://doi.org/10.1167/iovs.04-0905

Warees A, Saeed A, Hasan W, Ahsan S, Faraz M. Advances in Gene Therapy for Age Related Macular Degeneration (ARMD): A Promising Frontier; 2025: 116-38. DOI: https://doi.org/10.9734/bpi/msraa/v11/6257

Igo RP, Jr., Kinzy TG, Cooke Bailey JN. Genetic Risk Scores. Curr Protoc Hum Genet. 2019;104(1):e95. DOI: https://doi.org/10.1002/cphg.95

Bhatwadekar AD, Shughoury A, Belamkar A, Ciulla TA. Genetics of Diabetic Retinopathy, a Leading Cause of Irreversible Blindness in the Industrialized World. Genes (Basel). 2021;12(8). DOI: https://doi.org/10.3390/genes12081200

Xiao A, Zhong H, Xiong L, Yang L, Xu Y, Wen S, et al. Sequential and Dynamic Variations of IL-6, CD18, ICAM, TNF-α, and Microstructure in the Early Stage of Diabetic Retinopathy. Dis Markers. 2022;2022:1946104. DOI: https://doi.org/10.1155/2022/1946104

Cao M, Tian Z, Zhang L, Liu R, Guan Q, Jiang J. Genetic association of AKR1B1 gene polymorphism rs759853 with diabetic retinopathy risk: A meta-analysis. Gene. 2018;676:73-8. DOI: https://doi.org/10.1016/j.gene.2018.07.014

Lee SH, Yang JY, Madrakhimov S, Park HY, Park K, Park TK. Adeno-Associated Viral Vector 2 and 9 Transduction Is Enhanced in Streptozotocin-Induced Diabetic Mouse Retina. Mol Ther Methods Clin Dev. 2019;13:55-66. DOI: https://doi.org/10.1016/j.omtm.2018.11.008

Li C, Miao X, Li F, Wang S, Liu Q, Wang Y, et al. Oxidative Stress-Related Mechanisms and Antioxidant Therapy in Diabetic Retinopathy. Oxid Med Cell Longev. 2017;2017:9702820. DOI: https://doi.org/10.1155/2017/9702820

Xu CL, Park KS, Tsang SH. CRISPR/Cas9 genome surgery for retinal diseases. Drug Discov Today Technol. 2018;28:23-32. DOI: https://doi.org/10.1016/j.ddtec.2018.05.001

Downloads

Published

2025-12-31

How to Cite

Warees, A., Abbas, A., Alam, M., & Abbas, K. (2025). Current perspectives on the pathogenesis, molecular pathways, and therapeutic targets in diabetic retinopathy . International Journal Of Community Medicine And Public Health, 13(1), 453–463. https://doi.org/10.18203/2394-6040.ijcmph20254461

Issue

Section

Review Articles