A comprehensive report on severe acute respiratory syndrome coronavirus-2 lineages in Puducherry from 2020 to 2023

Authors

  • Ferdinamarie Sharmila Philomenadin Department of Microbiology, JIPMER, Puducherry, India
  • Reshma Rajendran Department of Microbiology, JIPMER, Puducherry, India
  • Vimal R. Ratchagadasse Department of Microbiology, JIPMER, Puducherry, IndiaDepartment of Microbiology, JIPMER, Puducherry, India
  • Rahul Dhodapkar Department of Microbiology, JIPMER, Puducherry, India

DOI:

https://doi.org/10.18203/2394-6040.ijcmph20253709

Keywords:

SARS-CoV-2, India, Evolution, Molecular epidemiology, Spike gene, Sequencing

Abstract

This study presents the first comprehensive molecular epidemiology of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Puducherry, India, from 2020 to 2023, analyzing 1,840 sequences from S gene and whole-genome sequencing. Initial waves saw clade G dominance, followed by delta (clade GK) and Omicron (clade GRA) variants. High mutation density was observed in the spike protein’s N-terminal domain, including key mutations like D614G, E484 variants, N501Y, and P681H. The beta-associated A701V mutation was also detected. Findings align with global trends, showing variant transitions and spike mutations influencing infectivity and immune evasion. This work enhances understanding of regional SARS-CoV-2 evolution and variant dynamics.

Metrics

Metrics Loading ...

References

Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141-54. DOI: https://doi.org/10.1038/s41579-020-00459-7

Cascella M, Michael R, Abdul A, Scott C D, Raffaela DN. Features, Evaluation, and Treatment of Coronavirus (COVID-19). StatPearls. 2024.

World Health Organization. Coronavirus (COVID-19) Dashboard. Available at: https://covid19.who .int/. Accessed on 18 August 2025.

World Health Organization. COVID-19 Epidemiological Update. 2024. Available at: https://www.who.int/health-topics/coronavirus# tab=tab_1. Accessed on 18 August 2025.

George N, Prasad JB, Verma P. Statistical Model for COVID-19 in Different Waves of South Indian States. Dialogues Health. 2022;1:100016. DOI: https://doi.org/10.1016/j.dialog.2022.100016

Kar SS, Sarkar S, Murali S, Dhodapkar R, Joseph NM, Aggarwal R. Prevalence and Time Trend of SARS-CoV-2 Infection in Puducherry, India, August-October 2020. Emerg Infect Dis. 2021;27(2):666-9. DOI: https://doi.org/10.3201/eid2702.204480

Phan T. Genetic diversity and evolution of SARS-CoV-2. Infect Genet Evol. 2020;81:104260. DOI: https://doi.org/10.1016/j.meegid.2020.104260

Yuan Y, He J, Gong L, Li W, Jiang L, Liu J, et al. Molecular epidemiology of SARS-CoV-2 clusters caused by asymptomatic cases in Anhui Province, China. BMC Infect Dis. 2020;20(1):930. DOI: https://doi.org/10.1186/s12879-020-05612-4

Sarkar A, Chakrabarti AK, Dutta S. Covid-19 Infection in India: A Comparative Analysis of the Second Wave with the First Wave. Pathogens. 2021;10(9):1222. DOI: https://doi.org/10.3390/pathogens10091222

Sabir DK. Analysis of SARS-COV2 spike protein variants among Iraqi isolates. Gene Rep. 2022;26:101420. DOI: https://doi.org/10.1016/j.genrep.2021.101420

Benslimane FM, Al Khatib HA, Al-Jamal O, Albatesh D, Boughattas S, Ahmed AA, et al. One Year of SARS-CoV-2: Genomic Characterization of COVID-19 Outbreak in Qatar. Front Cell Infect Microbiol. 2021;11:768883. DOI: https://doi.org/10.3389/fcimb.2021.768883

Volz E, Hill V, McCrone JT, Price A, Jorgensen D, O'Toole Á, et al. Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell. 2021;184(1):64-75. DOI: https://doi.org/10.1101/2020.07.31.20166082

Greaney AJ, Loes AN, Crawford KHD, Starr TN, Malone KD, Chu HY, et al. Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe. 2021;29(3):463-76. DOI: https://doi.org/10.1016/j.chom.2021.02.003

Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JCC, et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. bioRxiv. 2020;2020:214759. DOI: https://doi.org/10.7554/eLife.61312.sa2

Baum A, Fulton BO, Wloga E, Copin R, Pascal KE, Russo V, et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science. 2020;369(6506):1014-8. DOI: https://doi.org/10.1126/science.abd0831

Andreano E, Piccini G, Licastro D, Casalino L, Johnson NV, Paciello I, et al. SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma. bioRxiv. 2020;2020:424451. DOI: https://doi.org/10.1101/2020.12.28.424451

Liu Y, Liu J, Plante KS, Plante JA, Xie X, Zhang X, et al. The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature. 2022;602(7896):294-9. DOI: https://doi.org/10.1038/s41586-021-04245-0

Tian F, Tong B, Sun L, Shi S, Zheng B, Wang Z, et al. N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. Elife. 2021;10:e69091. DOI: https://doi.org/10.7554/eLife.69091

Guruprasad L. Human SARS CoV-2 spike protein mutations. Proteins. 2021;89(5):569-76. DOI: https://doi.org/10.1002/prot.26042

Limaye S, Kasibhatla SM, Ramtirthkar M, Kinikar M, Kale MM, Kulkarni-Kale U. Circulation and Evolution of SARS-CoV-2 in India: Let the Data Speak. Viruses. 2021;13(11):2238. DOI: https://doi.org/10.3390/v13112238

Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 2021;593(7857):130-5. DOI: https://doi.org/10.1038/s41586-021-03398-2

Downloads

Published

2025-10-31

How to Cite

Philomenadin, F. S., Rajendran, R., Ratchagadasse, V. R., & Dhodapkar, R. (2025). A comprehensive report on severe acute respiratory syndrome coronavirus-2 lineages in Puducherry from 2020 to 2023. International Journal Of Community Medicine And Public Health, 12(11), 5225–5229. https://doi.org/10.18203/2394-6040.ijcmph20253709

Issue

Section

Short Communication