Pathological basis of severe malaria in children: investigating immune dysregulation, organ-specific damage, and long-term outcomes

Authors

  • Areeba Shahid Department of Medicine, Jinnah Sindh Medical University, Karachi, Karachi, Pakistan
  • Mosunmade Oshingbesan Department of Clinical Psychiatry, Norfolk and Suffolk NHS Foundation Trust, Ipswich, the United Kingdom
  • Okafor Ugochukwu Uchenna Department of Medical Laboratory Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
  • Gaurav Kansal Department of Medicine and Surgery, Government Medical College, Patiala, India
  • Ahmad Sanan Department of Medicine, Khyber Medical College, Peshawar, Pakistan
  • Zainab Abdullahi Zubairu Department of Nursing Science, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
  • Tinggon Clifford Tsalla Department of Medicine and Surgery, College of Health Sciences, University of Jos, Jos, Plateau State, Nigeria
  • Arube Ruby Egbo Department of Medicine, Central Hospital Sapele, Sapele, Delta State, Nigeria
  • Davidson John Ozoemena Department of Physiology, School of Medicine, Wayne State University, Michigan, United States of America
  • Excel Onajite Ernest-Okonofua Department of Research, The Medical Research Circle (MedReC), Goma, Democratic Republic of Congo
  • Malik Olatunde Oduoye Department of Research, The Medical Research Circle (MedReC), Goma, Democratic Republic of Congo
  • Abubakar Nazir Department of Medicine, The Jewish Hospital-Mercy Health, USA; Department of Medicine, King Edward Medical University, Pakistan

DOI:

https://doi.org/10.18203/2394-6040.ijcmph20252145

Keywords:

Severe malaria, Children, Immune dysregulation, Organ-specific damage, Outcomes

Abstract

Malaria is a globally endemic parasitic disease, particularly prevalent in tropical regions and primarily affecting children and pregnant women. Comprehending the pathological mechanisms underlying severe malaria is crucial for enhancing treatment outcomes and decreasing mortality rates. This study aims to investigate immune dysregulation in severe malaria, explore organ-specific damage resulting from malaria infections in children, and examine long-term health consequences in survivors of severe malaria. This literature review involved an extensive literature search across electronic databases including PubMed, Google Scholar, Scopus, and Web of Science using keywords such as: severe malaria, children, immune dysregulation, organ-specific damage, and outcomes from 2015 to 2025. The study found cytokine imbalance and endothelial dysfunction due to immune dysregulation, liver and kidney dysfunction, and hematological changes due to severe malaria. To prevent the consequences of severe malaria in children, awareness and early detection of malaria signs and symptoms, next-generation sequencing, proteomics, and metabolomics, as well as regional and community-based malaria research, are required.

Metrics

Metrics Loading ...

References

Chiabi A, Djimafo ANM, Nguefack S, Mah E, Nguefack Dongmo F, Angwafo F. Severe malaria in Cameroon: Pattern of disease in children at the Yaounde Gynaeco-Obstetric and Pediatric hospital. J Infect Public Health. 2020;13(10):1469-72. DOI: https://doi.org/10.1016/j.jiph.2020.02.038

Ashley EA, Poespoprodjo JR. Treatment and prevention of malaria in children. Lancet Child Adolesc Health. 2020;4(10):775-89. DOI: https://doi.org/10.1016/S2352-4642(20)30127-9

Newton CR, Krishna S. Severe falciparum malaria in children: current understanding of pathophysiology and supportive treatment. Pharmacol Ther. 1998;79(1):1-53. DOI: https://doi.org/10.1016/S0163-7258(98)00008-4

Friedman-Klabanoff DJ, Adu-Gyasi D, Asante KP. Malaria prevention in children: an update. Curr Opin Pediatr. 2024;36(2):164-70. DOI: https://doi.org/10.1097/MOP.0000000000001332

Sato S. Plasmodium: brief introduction to the parasites causing human malaria and their basic biology. J Physiol Anthropol. 2021;40(1):1. DOI: https://doi.org/10.1186/s40101-020-00251-9

Milner DA. Malaria Pathogenesis. Cold Spring Harb Perspect Med. 2018;8(1):a025569. DOI: https://doi.org/10.1101/cshperspect.a025569

Blatch GL. Plasmodium falciparum Molecular Chaperones: Guardians of the Malaria Parasite Proteome and Renovators of the Host Proteome. Front Cell Dev Biol. 2022;10:921739. DOI: https://doi.org/10.3389/fcell.2022.921739

Wassmer SC, Grau GER. Severe malaria: what’s new on the pathogenesis front? Int J Parasitol. 2017;47(2-3):145-52. DOI: https://doi.org/10.1016/j.ijpara.2016.08.002

Wahlgren M, Goel S, Akhouri RR. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria. Nat Rev Microbiol. 2017;15(8):479-91. DOI: https://doi.org/10.1038/nrmicro.2017.47

Buffet PA, Safeukui I, Deplaine G. The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology. Blood. 2011;117(2):381-92. DOI: https://doi.org/10.1182/blood-2010-04-202911

Silver KL, Higgins SJ, McDonald CR, Kain KC. Complement-driven innate immune response to malaria: fuelling severe malarial diseases. Cell Microbiol. 2010;12(8):1036-45. DOI: https://doi.org/10.1111/j.1462-5822.2010.01492.x

Gowda DC, Wu X. Parasite Recognition and Signaling Mechanisms in Innate Immune Responses to Malaria. Front Immunol. 2018;9:3006. DOI: https://doi.org/10.3389/fimmu.2018.03006

Pohl K, Cockburn IA. Innate immunity to malaria: The good, the bad and the unknown. Front Immunol. 2022;13:914598. DOI: https://doi.org/10.3389/fimmu.2022.914598

Farrington L, Vance H, Rek J. Both inflammatory and regulatory cytokine responses to malaria are blunted with increasing age in highly exposed children. Malar J. 2017;16(1):499. DOI: https://doi.org/10.1186/s12936-017-2148-6

Perkins DJ, Were T, Davenport GC, Kempaiah P, Hittner JB, Ong’echa JM. Severe malarial anemia: innate immunity and pathogenesis. Int J Biol Sci. 2011;7(9):1427-42. DOI: https://doi.org/10.7150/ijbs.7.1427

Popa GL, Popa MI. Recent Advances in Understanding the Inflammatory Response in Malaria: A Review of the Dual Role of Cytokines. J Immunol Res. 2021;2021:7785180. DOI: https://doi.org/10.1155/2021/7785180

Obeagu EI. Role of cytokines in immunomodulation during malaria clearance. Ann Med Surg 2012. 2024;86(5):2873-82. DOI: https://doi.org/10.1097/MS9.0000000000002019

Okpokor DO, Peter AM, Olusola A, Dakul AD. Pro and anti-inflammatory immune response profiling prevents severe malaria among Nigerians infected with Plasmodium falciparum: the future for malaria vaccines and therapeutics. Research Square. 2020. DOI: https://doi.org/10.21203/rs.2.22063/v1

Nkansah C, Osei-Boakye F, Abbam G, Appiah SK, Daud S, Boakye B, et al. Pro and anti-inflammatory cytokines mediate the progression of severe anemia in malaria-infected children: A prospective study. Immun Inflamm Dis. 2024;12(9):e70013. DOI: https://doi.org/10.1002/iid3.70013

Lourembam SD, Sawian CE, Baruah S. Dysregulation of cytokines expression in complicated falciparum malaria with increased TGF-β and IFN-γ and decreased IL-2 and IL-12. Cytokine. 2013;64(2):503-8. DOI: https://doi.org/10.1016/j.cyto.2013.08.007

Cardoso FL, Brites D, Brito MA. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev. 2010;64(2):328-63. DOI: https://doi.org/10.1016/j.brainresrev.2010.05.003

Neuwelt EA, Bauer B, Fahlke C, Gert F, Constantino I, Damir J, et al. Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci. 2011;12(3):169-82. DOI: https://doi.org/10.1038/nrn2995

Brown H, Hien TT, Day N, Mai NT, Chuong LV, Chau TT, et al. Evidence of blood-brain barrier dysfunction in human cerebral malaria. Neuropathol Appl Neurobiol. 1999;25(4):331-40. DOI: https://doi.org/10.1046/j.1365-2990.1999.00188.x

Faille D, El-Assaad F, Alessi MC, Fusai T, Combes V, Grau GE. Platelet-endothelial cell interactions in cerebral malaria: the end of a cordial understanding. Thromb Haemost. 2009;102(6):1093-102. DOI: https://doi.org/10.1160/TH09-05-0337

Medana IM, Turner GDH. Human cerebral malaria and the blood-brain barrier. Int J Parasitol. 2006;36(5):555-68. DOI: https://doi.org/10.1016/j.ijpara.2006.02.004

Ogutu BR, Newton CRJC. Management of seizures in children with falciparum malaria. Trop Doct. 2004;34(2):71-5. DOI: https://doi.org/10.1177/004947550403400204

Shi Z, Chen Y, Lu C, Li-Ming D, Jing-Wei L, Qin-Hui T, et al. Resolving neuroinflammation, the therapeutic potential of the anti-malaria drug family of artemisinin. Pharmacol Res. 2018;136:172-80. DOI: https://doi.org/10.1016/j.phrs.2018.09.002

Silva GB da, Pinto JR, Barros EJG, Farias GMN, Daher EDF. Kidney involvement in malaria: an update. Rev Inst Med Trop Sao Paulo. 2017;59:e53. DOI: https://doi.org/10.1590/s1678-9946201759053

Brown DD, Solomon S, Lerner D, Del Rio M. Malaria and acute kidney injury. Pediatr Nephrol Berl Ger. 2020;35(4):603-8. DOI: https://doi.org/10.1007/s00467-018-4191-0

Cabezón Estévanez I, Górgolas Hernández-Mora M. [Pulmonary complications of malaria: An update]. Med Clin (Barc). 2016;146(8):354-8. DOI: https://doi.org/10.1016/j.medcle.2016.06.017

Siagian FE. Pulmonary Complications in Severe Malaria. Int J Pathog Res. 2021;19-27. DOI: https://doi.org/10.9734/ijpr/2021/v8i130194

Candido Moura G, Barcelos D, Epiphanio S, Santos Ortolan LD. Physiopathology of Malaria-Associated Acute Respiratory Distress Syndrome. J Ancient Dis Prevent Remed. 2017;5:4. DOI: https://doi.org/10.4172/2329-8731.1000171

Ray HN, Doshi D, Rajan A, Singh AK, Singh SB, Das MK. Cardiovascular involvement in severe malaria: A prospective study in Ranchi, Jharkhand. J Vector Borne Dis. 2017;54(2):177-82. DOI: https://doi.org/10.4103/0972-9062.211700

White NJ. Anaemia and malaria. Malar J. 2018;17(1):371. DOI: https://doi.org/10.1186/s12936-018-2509-9

Abdulkareem BO, Adam AO, Ahmed AO, Mariam AA, Samuel UU. Malaria-induced anaemia and serum micronutrients in asymptomatic Plasmodium falciparum-infected patients. J Parasit Dis Off Organ Indian Soc Parasitol. 2017;41(4):1093-7. DOI: https://doi.org/10.1007/s12639-017-0940-4

Zaidi SMF, Amjad A, Sohail K, Rehman FU. A complex case of recurrent intracranial bleeds due to malaria-induced coagulopathy: A case report and literature review. Surg Neurol Int. 2024;15:304. DOI: https://doi.org/10.25259/SNI_553_2024

Milner EM, Kariger P, Pickering AJ, Christine PS, Kendra B, Audrie L, et al. Association between Malaria Infection and Early Childhood Development Mediated by Anemia in Rural Kenya. Int J Environ Res Public Health. 2020;17(3):902. DOI: https://doi.org/10.3390/ijerph17030902

Boivin MJ, Mohanty A, Sikorskii A, Vokhiwa M, Magen JG, Gladstone M. Early and middle childhood developmental, cognitive, and psychiatric outcomes of Malawian children affected by retinopathy-positive cerebral malaria. Child Neuropsychol J Norm Abnorm Dev Child Adolesc. 2019;25(1):81-102. DOI: https://doi.org/10.1080/09297049.2018.1451497

Carter JA, Ross AJ, Neville BGR, Elizabeth O, Khamis K, Mung'ala-Odera V, et al. Developmental impairments following severe falciparum malaria in children. Trop Med Int Health TM IH. 2005;10(1):3-10. DOI: https://doi.org/10.1111/j.1365-3156.2004.01345.x

Idro R, Kakooza-Mwesige A, Asea B, Keron S, Bangirana P, Opoka RO, et al. Cerebral malaria is associated with long-term mental health disorders: a cross-sectional survey of a long-term cohort. Malar J. 2016;15:184. DOI: https://doi.org/10.1186/s12936-016-1233-6

Ssenkusu JM, Hodges JS, Opoka RO, Richard I, Shapiro E, John CC, et al. Long-term Behavioral Problems in Children With Severe Malaria. Pediatrics. 2016;138(5):e20161965. DOI: https://doi.org/10.1542/peds.2016-1965

Vorasan N, Pan-Ngum W, Jittamala P, Maneeboonyang W, Rukmanee P, Lawpoolsri S. Long-term impact of childhood malaria infection on school performance among school children in a malaria endemic area along the Thai-Myanmar border. Malar J. 2015;14:401. DOI: https://doi.org/10.1186/s12936-015-0917-7

Boivin MJ, Sikorskii A, Familiar-Lopez I, Ruiseñor-Escudero H, Muhindo M, Kapisi J, et al. Malaria illness mediated by anaemia lessens cognitive development in younger Ugandan children. Malar J. 2016;15:210. DOI: https://doi.org/10.1186/s12936-016-1266-x

Balaji SN, Deshmukh R, Trivedi V. Severe malaria: Biology, clinical manifestation, pathogenesis and consequences. J Vector Borne Dis. 2020;57(1):1-13. DOI: https://doi.org/10.4103/0972-9062.308793

Akanbi O. The influence of malaria infection on kidney and liver function in children in Akoko area of Ondo state, Nigeria. 2015. Available at: https://www.semanticscholar.org/paper/The-influence-of-malaria-infection-on-kidney-and-in-Akanbi/2dfcebfc3f82764463e9eae58f81aa936577890d. Accessed on 05 March 2025.

Conroy AL, Opoka RO, Bangirana P, Idro R, Ssenkusu JM, Datta D, et al. Acute kidney injury is associated with impaired cognition and chronic kidney disease in a prospective cohort of children with severe malaria. BMC Med. 2019;17(1):98. DOI: https://doi.org/10.1186/s12916-019-1332-7

Obeagu E, Obeagu G. Hematological Changes Following Blood Transfusion in Young Children with Severe Malaria and HIV: A Critical Review. 2024;2:33-45.

Holm AE, Gomes LC, Marinho CRF, Odilson MS, Lasse SV, Biering-Sørensen T, et al. Prevalence of Cardiovascular Complications in Malaria: A Systematic Review and Meta-Analysis. Am J Trop Med Hyg. 2021;104(5):1643-50. DOI: https://doi.org/10.4269/ajtmh.20-1414

Etyang AO, Kapesa S, Odipo E, Evasius B, Kyobutungi C, Abdalla M, et al. Effect of Previous Exposure to Malaria on Blood Pressure in Kilifi, Kenya: A Mendelian Randomization Study. J Am Heart Assoc. 2019;8(6):e011771. DOI: https://doi.org/10.1161/JAHA.118.011771

Wooldridge G, Nandi D, Chimalizeni Y, O’Brien N. Cardiovascular Findings in Severe Malaria: A Review. Glob Heart. 2020;15(1):75. DOI: https://doi.org/10.5334/gh.789

Weil DN. Chapter 3 - Health and Economic Growth. In: Aghion P, Durlauf SN, eds. Handbook of Economic Growth. Vol 2. Handbook of Economic Growth. Elsevier; 2014:623-82. DOI: https://doi.org/10.1016/B978-0-444-53540-5.00003-3

Elnour Z, Grethe H, Siddig K, Munga S. Malaria control and elimination in Kenya: economy-wide benefits and regional disparities. Malar J. 2023;22(1):117. DOI: https://doi.org/10.1186/s12936-023-04505-6

Patouillard E, Han S, Lauer J, Barschkett M, Arcand JL. The Macroeconomic Impact of Increasing Investments in Malaria Control in 26 High Malaria Burden Countries: An Application of the Updated EPIC Model. Int J Health Policy Manag. 2023;12:7132. DOI: https://doi.org/10.34172/ijhpm.2023.7132

Castaldo N, Tascini C, Della Siega P, Peghin M, Pecori D. Clinical presentation and immunological features of Post-Malaria Neurologic Syndrome: a case report and review of literature. Malar J. 2020;19(1):419. DOI: https://doi.org/10.1186/s12936-020-03476-2

Yadava SK, Laleker A, Fazili T. Post-malaria neurological syndrome: a rare neurological complication of malaria. Infection. 2019;47(2):183-93. DOI: https://doi.org/10.1007/s15010-019-01267-9

Bellazreg F, Slama D, Lasfar NB, Abid M, Zaghouani H, Rouis S, et al. Neurological manifestations following cured malaria: don’t forget post-malaria neurological syndrome. Afr Health Sci. 2021;21(1):273-6. DOI: https://doi.org/10.4314/ahs.v21i1.35

Obeagu EI, Okoroiwu GIA, Ubosi NI, Obeagu GU, Onohuean H, Muhammad T, et al. Revolution in malaria detection: unveiling current breakthroughs and tomorrow’s possibilities in biomarker innovation. Ann Med Surg 2012. 2024;86(10):5859-76. DOI: https://doi.org/10.1097/MS9.0000000000002383

Proietti C, Krause L, Trieu A, Daniel D, Gyan B, Koram KA, et al. Immune Signature Against Plasmodium falciparum Antigens Predicts Clinical Immunity in Distinct Malaria Endemic Communities. Mol Cell Proteomics MCP. 2020;19(1):101-3. DOI: https://doi.org/10.1074/mcp.RA118.001256

Kyriazopoulou E, Giamarellos-Bourboulis EJ, Akinosoglou K. Biomarkers to guide immunomodulatory treatment: where do we stand? Expert Rev Mol Diagn. 2023;23(11):945-58. DOI: https://doi.org/10.1080/14737159.2023.2258063

Strzelec M, Detka J, Mieszczak P, Sobocińska MK, Majka M. Immunomodulation-a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Front Immunol. 2023;14:1127704. DOI: https://doi.org/10.3389/fimmu.2023.1127704

Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases. Nat Rev Immunol. 2018;18(2):91-104. DOI: https://doi.org/10.1038/nri.2017.112

Dunican C, Andradi-Brown C, Ebmeier S, Georgiadou A, Cunnington AJ. The malarial blood transcriptome: translational applications. Biochem Soc Trans. 2024;52(2):651-60. DOI: https://doi.org/10.1042/BST20230497

Varo R, Erice C, Johnson S, Bassat Q, Kain KC. Clinical trials to assess adjuvant therapeutics for severe malaria. Malar J. 2020;19(1):268. DOI: https://doi.org/10.1186/s12936-020-03340-3

Downloads

Published

2025-06-30

How to Cite

Shahid, A., Oshingbesan, M., Uchenna, O. U., Kansal, G., Sanan, A., Zubairu, Z. A., Tsalla, T. C., Egbo, A. R., Ozoemena, D. J., Ernest-Okonofua, E. O., Oduoye, M. O., & Nazir, A. (2025). Pathological basis of severe malaria in children: investigating immune dysregulation, organ-specific damage, and long-term outcomes. International Journal Of Community Medicine And Public Health, 12(7), 3368–3377. https://doi.org/10.18203/2394-6040.ijcmph20252145

Issue

Section

Review Articles