Artificial intelligence-enhanced in-vitro fertilization outcome prediction for the Indian subpopulation: integrating pre-treatment parameters and Bayesian-optimized ensemble techniques
DOI:
https://doi.org/10.18203/2394-6040.ijcmph20251387Keywords:
In vitro fertilization, Machine learning, Cloud application, Machine learning web application, Prediction modelling, Assisted reproductive technologyAbstract
Background: In-vitro fertilization (IVF) outcomes, particularly their socioeconomic impact, are a major concern for Indian couples. Predicting success using pre-treatment parameters can improve clinical decision-making. This study develops and validates Bayesian-optimized voting-ensemble (BoVe), a novel machine learning (ML) algorithm, to enhance predictive accuracy for live birth outcomes.
Methods: Clinical records from 2,908 IVF patients, encompassing 79 parameters-including maternal age, body mass index (BMI), Anti-Mullerian hormone (AMH) levels, number of IVF cycles, infertility type, and sperm parameters were analyzed following rigorous data preprocessing. The dataset was cleaned, transformed, and split 80:20 for training and validation. BoVe was evaluated against traditional ML models based on key performance metrics.
Results: BoVe identified AMH levels >3.5 ng/mL, BMI <23, and maternal age <35 as strong predictors of live birth in female patients. Male sperm parameters significantly influenced success rates. Compared to conventional ML models, BoVe achieved superior predictive performance with an ROC-AUC score of 0.93 and accuracy of 0.87, demonstrating robust effectiveness. Additionally, an AI-powered web application was developed for cloud-based fertility guidance, providing personalized recommendations based on patient parameters.
Conclusions: The BoVe model offers a highly accurate, population-specific approach to IVF prediction, surpassing previously published algorithms. Its integration into clinical workflows can enhance pre-treatment counseling, empower couples with data-driven reproductive insights, and improve success rates through personalized interventions.
Metrics
References
Hassan MR, Al-Insaif S, Hossain MI, Kamruzzaman J. A machine learning approach for prediction of pregnancy outcome following IVF treatment. Neural Comput Appl. 2020;32(7):2283-97. DOI: https://doi.org/10.1007/s00521-018-3693-9
Narad P, Kumar A, Chakraborty A, Patni P, Sengupta A, Wadhwa G, et al. Transcription Factor Information System (TFIS): A Tool for Detection of Transcription Factor Binding Sites. Interdiscip Sci. 2017;9(3):378-91. DOI: https://doi.org/10.1007/s12539-016-0168-5
Basu N, Narad P, Guptasarma ML, Tandon C, Das BC, Tandon S. Computational and In Vitro Approaches to Elucidate the Anti-cancer Effects of Arnica montana in Hormone-Dependent Breast Cancer. Homeopathy. 2022;111(4):288-300. DOI: https://doi.org/10.1055/s-0042-1743565
Sengupta A, Naresh G, Mishra A, Parashar D, Narad P. Proteome analysis using machine learning approaches and its applications to diseases. Adv Protein Chem Struct Biol. 2021;127:161-216. DOI: https://doi.org/10.1016/bs.apcsb.2021.02.003
Colaco S, Narad P, Singh AK, Gupta P, Choudhury A, Sengupta A, et al. FertilitY Predictor-a machine learning-based web tool for the prediction of assisted reproduction outcomes in men with Y chromosome microdeletions. J Assist Reprod Genet. 2024; 42(2):473-81. DOI: https://doi.org/10.1007/s10815-024-03338-9
Barnett-Itzhaki Z, Elbaz M, Butterman R, Amar D, Amitay M, Racowsky C, et al. Machine learning vs. classic statistics for the prediction of IVF outcomes. J Assist Reprod Genet. 2020;37(10):2405-12. DOI: https://doi.org/10.1007/s10815-020-01908-1
Ratna MB, Bhattacharya S, Abdulrahim B, McLernon DJ. A systematic review of the quality of clinical prediction models in in vitro fertilisation. Human Reproduction. 2020;35(1):100-16. DOI: https://doi.org/10.1093/humrep/dez258
Luke B, Brown MB, Wantman E, Stern JE, Baker VL, Widra E, et al. A prediction model for live birth and multiple births within the first three cycles of assisted reproductive technology. Fertil Steril. 2014;102(3):744-52. DOI: https://doi.org/10.1016/j.fertnstert.2014.05.020
McLernon DJ, Steyerberg EW, Te Velde ER, Lee AJ, Bhattacharya S. Predicting the chances of a live birth after one or more complete cycles of in vitro fertilisation: population based study of linked cycle data from 113 873 women. BMJ. 2016;355:i5735. DOI: https://doi.org/10.1136/bmj.i5735
McLernon DJ, Raja EA, Toner JP, Baker VL, Doody KJ, Seifer DB, et al. Predicting personalized cumulative live birth following in vitro fertilization. Fertil Steril. 2022;117(2):326-38. DOI: https://doi.org/10.1016/j.fertnstert.2021.09.015
Goyal A, Kuchana M, Ayyagari KPR. Machine learning predicts live-birth occurrence before in-vitro fertilization treatment. Sci Rep. 2020;10(1):20925.
Qiu J, Li P, Dong M, Xin X, Tan J. Personalized prediction of live birth prior to the first in vitro fertilization treatment: a machine learning method. J Transl Med. 2019;17(1):317. DOI: https://doi.org/10.1186/s12967-019-2062-5
Xu T, de Figueiredo Veiga A, Hammer KC, Paschalidis IC, Mahalingaiah S. Informative predictors of pregnancy after first IVF cycle using eIVF practice highway electronic health records. Sci Rep. 2022;12(1):839. DOI: https://doi.org/10.1038/s41598-022-04814-x
Majumdar G, Sengupta A, Narad P, Pandey H. Deep Inception-ResNet: A Novel Approach for Personalized Prediction of Cumulative Pregnancy Outcomes in vitro Fertilization Treatment (IVF). J Obstet Gynaecol India. 2023;73(4):343-50. DOI: https://doi.org/10.1007/s13224-023-01773-9
Chiware TM, Vermeulen N, Blondeel K, Farquharson R, Kiarie J, Lundin K, et al. IVF and other ART in low- and middle-income countries: a systematic landscape analysis. Hum Reprod Update. 2021;27(2):213-28. DOI: https://doi.org/10.1093/humupd/dmaa047
Cai QF, Wan F, Huang R, Zhang HW. Factors predicting the cumulative outcome of IVF/ICSI treatment: a multivariable analysis of 2450 patients. Human Reproduction. 2011;26(9):2532-40. DOI: https://doi.org/10.1093/humrep/der228
Vogiatzi P, Pouliakis A, Siristatidis C. An artificial neural network for the prediction of assisted reproduction outcome. J Assist Reprod Genet. 2019;36(7):1441-8. DOI: https://doi.org/10.1007/s10815-019-01498-7
Tarín JJ, Pascual E, García-Pérez MA, Gómez R, Hidalgo-Mora JJ, Cano A. A predictive model for women’s assisted fecundity before starting the first IVF/ICSI treatment cycle. J Assist Reprod Genet. 2020;37(1):171-80. DOI: https://doi.org/10.1007/s10815-019-01642-3
Qu P, Chen L, Zhao D, Shi W, Shi J. Nomogram for the cumulative live birth in women undergoing the first IVF cycle: Base on 26, 689 patients in China. Front Endocrinol (Lausanne). 2022;13:900829. DOI: https://doi.org/10.3389/fendo.2022.900829
Wang Q, Wan Q, Bu X, Feng Q, Li T, Lv X, et al. Nomogram models to predict low fertilisation rate and total fertilisation failure in patients undergoing conventional IVF cycles. BMJ Open. 202;12(11):e067838. DOI: https://doi.org/10.1136/bmjopen-2022-067838
Chen H, Sun ZL, Chen MX, Yang Y, Teng XM, Wang Y, et al. Predicting the probability of a live birth after a freeze-all based in vitro fertilization-embryo transfer (IVF-ET) treatment strategy. Transl Pediatr. 2022;11(6):797-812. DOI: https://doi.org/10.21037/tp-21-589
GitHub - shankarpandala/lazypredict: Lazy Predict help build a lot of basic models without much code and helps understand which models works better without any parameter tuning. Available at: https://github.com/shankarpandala/lazypredict. Accessed on 12 February 2025.
Pedregosa Fabianpedregosa F, Michel V, Grisel Oliviergrisel O, Blondel M, Prettenhofer P, Weiss R, et al. Scikit-learn: Machine Learning in Python. J Machine Learning Res. 2011;12:2825-30.
Scikit-optimize: sequential model-based optimization in Python-scikit-optimize 0.8.1 documentation. Available at: https://scikit-optimize.github.io/stable/. Accessed on 12 February 2025.
Goyal A, Kuchana M, Ayyagari KPR. Machine learning predicts live-birth occurrence before in-vitro fertilization treatment. Sci Rep. 2020;10(1):20925. DOI: https://doi.org/10.1038/s41598-020-76928-z
Shen L, Zhang Y, Chen W, Yin X. The Application of Artificial Intelligence in Predicting Embryo Transfer Outcome of Recurrent Implantation Failure. Front Physiol. 2022;13:885661. DOI: https://doi.org/10.3389/fphys.2022.885661