Hyperglycemia-induced oxidative stress in the development of diabetic retinopathy
DOI:
https://doi.org/10.18203/2394-6040.ijcmph20250070Keywords:
Diabetic retinopathy, Hyperglycemia, Oxidative stress, Inflammation, Mitochondrial dysfunctionAbstract
Diabetic retinopathy (DR), the leading cause of preventable blindness, is primarily caused by chronic hyperglycemia-induced oxidative stress. This review examines molecular mechanisms by which hyperglycemia-induced oxidative damage transmits into retinal tissue. We summarize the major pathways: polyol activation, advanced glycation end-products (AGEs), protein kinase C (PKC) dysregulation, and hexosamine pathway. Oxidative stress leads to mitochondrial dysfunction, apoptosis of retinal endothelium and pigment epithelium and activation of cytokines, as well as overexpression of vascular endothelial growth factor (VEGF). These processes together cause vascular leakage, macular edema and pathological angiogenesis. Trials of oxidative stress therapies (e.g. antioxidants, PKC inhibitors e.g., ruboxistaurin, and anti-VEGF agents e.g., ranibizumab, bevacizumab, aflibercept) as well as mitochondria targeted therapies are considered potential therapeutic approaches to improve DR prognosis. Further studies on DR pathophysiology and treatment are recommended to develop effective interventions for this vision threatening condition. Better prevention and management of DR requires early intervention and biomarker-based approaches.
Metrics
References
Wong TY, Cheung CM, Larsen M, Sharma S, Simo R. Diabetic retinopathy. Nat Rev Dis Primers. 2016;2:16012. DOI: https://doi.org/10.1038/nrdp.2016.12
Zhang X, Saaddine JB, Chou CF, Mary FC, Yiling JC, Linda SG, et al. Prevalence of diabetic retinopathy in the United States, 2005-2008. JAMA. 2010;304(6):649-56. DOI: https://doi.org/10.1001/jama.2010.1111
Zheng Y, He M, Congdon N. The worldwide epidemic of diabetic retinopathy. Indian J Ophthalmol. 2012;60(5):428-31. DOI: https://doi.org/10.4103/0301-4738.100542
Rodriguez ML, Perez S, Mena-Molla S, Desco MC, Ortega AL. Oxidative stress and microvascular alterations in diabetic retinopathy: Future therapies. Oxid Med Cell Longev. 2019;2019:4940825. DOI: https://doi.org/10.1155/2019/4940825
Andersen N, Hjortdal JO, Schielke KC, Toke B, Jakob G, Caroline SL, et al. The Danish registry of diabetic retinopathy. Clin Epidemiol. 2016;8:613-9. DOI: https://doi.org/10.2147/CLEP.S99507
Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020;37:101799. DOI: https://doi.org/10.1016/j.redox.2020.101799
Liu Y, Zhang D, Hu J, Guangming L, Jun C, Lechang S, et al. Visible light-induced lipid peroxidation of unsaturated fatty acids in the retina and the inhibitory effects of blueberry polyphenols. J Agric Food Chem. 2015;63(42):9295-305. DOI: https://doi.org/10.1021/acs.jafc.5b04341
Liu Y, Zhang D, Wu Y, Ji B. Docosahexaenoic acid aggravates photooxidative damage in retinal pigment epithelial cells via lipid peroxidation. J Photochem Photobiol B. 2014;140:85-93. DOI: https://doi.org/10.1016/j.jphotobiol.2014.07.016
Behl T, Kaur I, Kotwani A. Implication of oxidative stress in progression of diabetic retinopathy. Surv Ophthalmol. 2016;61(2):187-96. DOI: https://doi.org/10.1016/j.survophthal.2015.06.001
Cutler RG. Oxidative stress profiling: part I. Its potential importance in the optimization of human health. Ann N Y Acad Sci. 2005;1055:93-135. DOI: https://doi.org/10.1196/annals.1323.027
Srejovic JV, Muric MD, Jakovljevic VL, Ivan MS, Suncica BS, Nenad TP, et al. Molecular and cellular mechanisms involved in the pathophysiology of retinal vascular disease-interplay between inflammation and oxidative stress. Int J Mol Sci. 2024;25(21):11850. DOI: https://doi.org/10.3390/ijms252111850
Hammes HP. Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia. 2018;61(1):29-38. DOI: https://doi.org/10.1007/s00125-017-4435-8
Miller RG, Orchard TJ. Understanding metabolic memory: A tale of two studies. Diabetes. 2020;69(3):291-9. DOI: https://doi.org/10.2337/db19-0514
Kumari N, Karmakar A, Ganesan SK. Targeting epigenetic modifications as a potential therapeutic option for diabetic retinopathy. J Cell Physiol. 2020;235(3):1933-47. DOI: https://doi.org/10.1002/jcp.29180
Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010;4(8):118-26. DOI: https://doi.org/10.4103/0973-7847.70902
SanGiovanni JP, Chew EY. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res. 2005;24(1):87-138. DOI: https://doi.org/10.1016/j.preteyeres.2004.06.002
Nowak JZ. Oxidative stress, polyunsaturated fatty acids-derived oxidation products and bisretinoids as potential inducers of CNS diseases: focus on age-related macular degeneration. Pharmacol Rep. 2013;65(2):288-304. DOI: https://doi.org/10.1016/S1734-1140(13)71005-3
Wang J, Chakrabarty S, Bui Q, Ruf W, Samad F. Hematopoietic tissue factor-protease-activated receptor 2 signaling promotes hepatic inflammation and contributes to pathways of gluconeogenesis and steatosis in obese mice. Am J Pathol. 2015;185(2):524-35. DOI: https://doi.org/10.1016/j.ajpath.2014.10.008
Sajan MP, Standaert ML, Nimal S, Usha V, Tina P, Stephen M, et al. The critical role of atypical protein kinase C in activating hepatic SREBP-1c and NFkappaB in obesity. J Lipid Res. 2009;50(6):1133-45. DOI: https://doi.org/10.1194/jlr.M800520-JLR200
Behl T, Kaur I, Goel H, Pandey RK. Diabetic nephropathy and diabetic retinopathy as major health burdens in modern era. World J Pharmacy Pharmaceut Sci. 2014;3(7):370-87.
Ishida S, Usui T, Yamashiro K, Yuichi K, Shiro A, Yuichiro O, et al. VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization. J Exp Med. 2003;198(3):483-9. DOI: https://doi.org/10.1084/jem.20022027
Safi SZ, Qvist R, Kumar S, Batumalaie K, Ismail IS. Molecular mechanisms of diabetic retinopathy, general preventive strategies, and novel therapeutic targets. Biomed Res Int. 2014;2014:801269. DOI: https://doi.org/10.1155/2014/801269
Jingi AM, Noubiap JJ, Ellong A, Bigna JJ, Mvogo CE. Epidemiology and treatment outcomes of diabetic retinopathy in a diabetic population from Cameroon. BMC Ophthalmol. 2014;14:19. DOI: https://doi.org/10.1186/1471-2415-14-19
Lorenzi M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Exp Diabetes Res. 2007;2007:61038. DOI: https://doi.org/10.1155/2007/61038
Lassegue B, Clempus RE. Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol. 2003;285(2):R277-97. DOI: https://doi.org/10.1152/ajpregu.00758.2002
Yan LJ. Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res. 2014;2014:137919. DOI: https://doi.org/10.1155/2014/137919
Wu MY, Yiang GT, Lai TT, Li CJ. The oxidative stress and mitochondrial dysfunction during the pathogenesis of diabetic retinopathy. Oxid Med Cell Longev. 2018;2018:3420187. DOI: https://doi.org/10.1155/2018/3420187
Baba SP, Barski OA, Ahmed Y, O'Toole TE, Conklin DJ, Bhatnagar A, et al. Reductive metabolism of AGE precursors: a metabolic route for preventing AGE accumulation in cardiovascular tissue. Diabetes. 2009;58(11):2486-97. DOI: https://doi.org/10.2337/db09-0375
Vistoli G, De Maddis D, Cipak A, Zarkovic N, Carini M, Aldini G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic Res. 2013;47(1):3-27. DOI: https://doi.org/10.3109/10715762.2013.815348
Suzen S, Buyukbingol E. Recent studies of aldose reductase enzyme inhibition for diabetic complications. Curr Med Chem. 2003;10(15):1329-52. DOI: https://doi.org/10.2174/0929867033457377
Marin P, Maus M, Bockaert J, Glowinski J, Premont J. Oxygen free radicals enhance the nitric oxide-induced covalent NAD(+)-linkage to neuronal glyceraldehyde-3-phosphate dehydrogenase. Biochem J. 1995;309(Pt 3)(Pt 3):891-8. DOI: https://doi.org/10.1042/bj3090891
Mengstie MA, Chekol Abebe E, Behaile Teklemariam A, Anemut TM, Melaku MA, Muluken TA, et al. Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications. Front Mol Biosci. 2022;9:1002710. DOI: https://doi.org/10.3389/fmolb.2022.1002710
Behl T, Kaur I, Goel H, Pandey R. PKC activation in the pathogenesis of various diabetic complications. Asian J Biochem Pharm Res. 2014;2(4):232-45.
Mullard A. Kinases out of control-brake line cut! Mol Cell Biol. 2007;8(11):854. DOI: https://doi.org/10.1038/nrm2280
Xu H, Czerwinski P, Hortmann M, Sohn HY, Forstermann U, Li H. Protein kinase C alpha promotes angiogenic activity of human endothelial cells via induction of vascular endothelial growth factor. Cardiovasc Res. 2008;78(2):349-55. DOI: https://doi.org/10.1093/cvr/cvm085
Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442-54. DOI: https://doi.org/10.1038/nrc822
Yeh CC, Chang HI, Chiang JK, Wang-Ting T, Li-Ming C, Chean-Ping W, et al. Regulation of plasminogen activator inhibitor 1 expression in human osteoarthritic chondrocytes by fluid shear stress: role of protein kinase Calpha. Arthritis Rheum. 2009;60(8):2350-61. DOI: https://doi.org/10.1002/art.24680
Fan TJ, Han LH, Cong RS, Liang J. Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai). 2005;37(11):719-27. DOI: https://doi.org/10.1111/j.1745-7270.2005.00108.x
Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell. 2002;9(3):459-70. DOI: https://doi.org/10.1016/S1097-2765(02)00482-3
Gogvadze V, Orrenius S, Zhivotovsky B. Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim Biophys Acta. 2006;1757(5-6):639-47. DOI: https://doi.org/10.1016/j.bbabio.2006.03.016
Cande C, Cecconi F, Dessen P, Kroemer G. Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci. 2002;115(Pt 24):4727-34. DOI: https://doi.org/10.1242/jcs.00210
Cecconi F, Roth KA, Dolgov O, Eliana M, Konstantin A, Peter G, et al. Apaf1-dependent programmed cell death is required for inner ear morphogenesis and growth. Development. 2004;131(9):2125-35. DOI: https://doi.org/10.1242/dev.01082
Tangvarasittichai O, Tangvarasittichai S. Oxidative stress, ocular disease and diabetes retinopathy. Curr Pharm Des. 2018;24(40):4726-41. DOI: https://doi.org/10.2174/1381612825666190115121531
Chung SS, Ho EC, Lam KS, Chung SK. Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol. 2003;14(8-3):S233-6. DOI: https://doi.org/10.1097/01.ASN.0000077408.15865.06
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058-70. DOI: https://doi.org/10.1161/CIRCRESAHA.110.223545
Yuuki T, Kanda T, Kimura Y, Kotajima N, Tamura J, Kobayashi I, et al. Inflammatory cytokines in vitreous fluid and serum of patients with diabetic vitreoretinopathy. J Diabetes Complications. 2001;15(5):257-9. DOI: https://doi.org/10.1016/S1056-8727(01)00155-6
Quan N, He L, Lai W. Endothelial activation is an intermediate step for peripheral lipopolysaccharide induced activation of paraventricular nucleus. Brain Res Bull. 2003;59(6):447-52. DOI: https://doi.org/10.1016/S0361-9230(02)00951-6
Schoenberger SD, Kim SJ, Sheng J, Rezaei KA, Lalezary M, Cherney E. Increased prostaglandin E2 (PGE2) levels in proliferative diabetic retinopathy, and correlation with VEGF and inflammatory cytokines. Invest Ophthalmol Vis Sci. 2012;53(9):5906-11. DOI: https://doi.org/10.1167/iovs.12-10410
Wilkinson-Berka JL. Vasoactive factors and diabetic retinopathy: vascular endothelial growth factor, cycoloxygenase-2 and nitric oxide. Curr Pharm Des. 2004;10(27):3331-48. DOI: https://doi.org/10.2174/1381612043383142
Pramanik S, Banerjee K, Mondal LK. The amelioration of detrimental biochemical anomalies by supplementing b, c, and e vitamins in subjects with type 2 diabetes mellitus may reduce the rate of development of diabetic retinopathy. J Diabetes Res. 2022;2022:3886710. DOI: https://doi.org/10.1155/2022/3886710
Ishii H, Jirousek MR, Koya D, Takagi C, Xia P, Clermont A, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science. 1996;272(5262):728-31. DOI: https://doi.org/10.1126/science.272.5262.728
Danis RP, Bingaman DP, Jirousek M, Yang Y. Inhibition of intraocular neovascularization caused by retinal ischemia in pigs by PKCbeta inhibition with LY333531. Invest Ophthalmol Vis Sci. 1998;39(1):171-9.
Mitchell P, Bandello F, Schmidt-Erfurth U, Gabriele EL, Pascale M, Reinier OS,et al. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology. 2011;118(4):615-25. DOI: https://doi.org/10.1016/j.ophtha.2011.01.031
Ip MS, Domalpally A, Sun JK, Ehrlich JS. Long-term effects of therapy with ranibizumab on diabetic retinopathy severity and baseline risk factors for worsening retinopathy. Ophthalmology. 2015;122(2):367-74. DOI: https://doi.org/10.1016/j.ophtha.2014.08.048
Kowluru RA, Mishra M. Therapeutic targets for altering mitochondrial dysfunction associated with diabetic retinopathy. Expert Opin Ther Targets. 2018;22(3):233-45. DOI: https://doi.org/10.1080/14728222.2018.1439921