Assessing the effectiveness of vaccination strategies against respiratory pathogens⁠

Authors

  • Marwah Y. Abdullah Department of Family Medicine, East Jeddah Hospital, Jeddah, Saudi Arabia
  • Faisal M. Alanazi College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
  • Saad F. Gandurah ICU, Al Noor Specialist Hospital, Mecca, Saudi Arabia
  • Dhiyaa A. Altufayif Primary Health Network, Qatif Health Network, Qatif, Saudi Arabia
  • Abdulrahman M. Alghamdi Primary Health Care, King Abdullah Medical Complex, Jeddah, Saudi Arabia
  • Olfa A. Halawani General Practice, King Fahad General Hospital, Jeddah, Saudi Arabia
  • Fatimah F. Almudarhem Department of Family Medicine, Qatif Health Network, Qatif, Saudi Arabia
  • Raghad I. Al-Otaibe Pharmacy Department, Dr. Sulaiman Al Habib Hospital, Riyadh, Saudi Arabia
  • Osama M. Allathiqani Department of Pediatrics, Madinah Health Cluster, Medina, Saudi Arabia
  • Amani A. Alasmari Primary Health Care, Primary Health Care Center in East Khamis Mushait, Khamis Mushait, Saudi Arabia

DOI:

https://doi.org/10.18203/2394-6040.ijcmph20250065

Keywords:

Vaccination, Effectiveness, Efficacy, Respiratory pathogens, Respiratory tract infection, Immunization

Abstract

Vaccination has been an effective method in preventing many childhood-related infections and reducing the risk of infections in adults. Between the mid-1960s and 2015, vaccination has been successful in saving more than 10 million lives. Respiratory pathogens have been a main target for vaccination over decades. Many vaccines were developed against respiratory pathogens such as influenza. virus, Streptococcus pneumoniae, and Mycobacterium tuberculosis. Vaccination against respiratory pathogens faces new challenges every year due to different reasons. The following databases were used in systematic research: Medline (PubMed), Web of Science, and Scopus. Summaries of the found studies were exported by EndNote X8, and duplicate studies were removed. Inclusion criteria were any study. Despite the proven effectiveness of various vaccines against respiratory pathogens, several challenges persist in this field. These include the waning of vaccine-induced immunity, prompting the need of developing vaccines that provide long-lasting protection; vaccination harmful side effects; and the emergence of new subtypes are examples of these challenges. In the aftermath of the COVID-19 pandemic, clinical trials are underway to develop more effective vaccines against a range of pathogens. However, greater large-scale efforts are needed, particularly in low-income countries, to enhance global public health outcomes.

Metrics

Metrics Loading ...

References

Orenstein WA, Ahmed R. Simply put: Vaccination saves lives. Proceed Nat Acad Sci United States Am. 2017;114(16):4031-3. DOI: https://doi.org/10.1073/pnas.1704507114

World Health Organization. Together we can close the immunization gap. Available at: https://www.who.int/. Accessed on 22 December 2024.

Yagovkina NV, Zheleznov LM, Subbotina KA, Tsaan AA, Kozlovskaya LI, Gordeychuk IV, et al. Vaccination With Oral Polio Vaccine Reduces COVID-19 Incidence. Front Immunol. 2022;13:907341. DOI: https://doi.org/10.3389/fimmu.2022.907341

Do LAH, Toh ZQ, Licciardi PV, Mulholland EK. Can early measles vaccination control both measles and respiratory syncytial virus infections? Lancet Glob Health. 2022;10(2):e288-92. DOI: https://doi.org/10.1016/S2214-109X(21)00464-2

Lefebvre C, Glanville J, Briscoe S, Featherstone R, Littlewood A, Metzendorf MI, et al. Chapter 4: Searching for and selecting studies. Cochrane Traning. Available at: https://training.cochrane. org/handbook/current/chapter-04. Accessed on 13 November 2024.

Wahl B, O'Brien KL, Greenbaum A, Majumder A, Liu L, Chu Y, et al. Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000-15. Lancet Glob Health. 2018;6(7):e744-57. DOI: https://doi.org/10.1016/S2214-109X(18)30247-X

Johnson HL, Deloria-Knoll M, Levine OS, Stoszek SK, Freimanis Hance L, Reithinger R, et al. Systematic evaluation of serotypes causing invasive pneumococcal disease among children under five: the pneumococcal global serotype project. PLoS Med. 2010;7(10):e1000348. DOI: https://doi.org/10.1371/journal.pmed.1000348

Wiese AD, Griffin MR, Grijalva CG. Impact of pneumococcal conjugate vaccines on hospitalizations for pneumonia in the United States. Exp Rev Vaccines. 2019;18(4):327-41. DOI: https://doi.org/10.1080/14760584.2019.1582337

Ozlu T, Bulbul Y, Aydin D, Tatar D, Kuyucu T, Erboy F, et al; RIMPACT Study Investigators. Immunization status in chronic obstructive pulmonary disease: A multicenter study from Turkey. Ann Thorac Med. 2019;14(1):75-82. DOI: https://doi.org/10.4103/atm.ATM_145_18

Esposito S, Principi N. Pneumococcal vaccines and the prevention of community-acquired pneumonia. Pulm Pharmacol Ther. 2015;32:124-9. DOI: https://doi.org/10.1016/j.pupt.2014.02.003

Centers for Disease Control and Prevention (CDC). Direct and indirect effects of routine vaccination of children with 7-valent pneumococcal conjugate vaccine on incidence of invasive pneumococcal disease--United States, 1998-2003. MMWR Morb Mortal Wkly Rep. 2005;54(36):893-7.

Grijalva CG, Poehling KA, Nuorti JP, Zhu Y, Martin SW, Edwards KM, et al. National impact of universal childhood immunization with pneumococcal conjugate vaccine on outpatient medical care visits in the United States. Pediatrics. 2006;118(3):865-73. DOI: https://doi.org/10.1542/peds.2006-0492

Miller E, Andrews NJ, Waight PA, Slack MP, George RC. Herd immunity and serotype replacement 4 years after seven-valent pneumococcal conjugate vaccination in England and Wales: an observational cohort study. Lancet Infect Dis. 2011;11(10):760-8. DOI: https://doi.org/10.1016/S1473-3099(11)70090-1

Jefferies JM, Macdonald E, Faust SN, Clarke SC. 13-valent pneumococcal conjugate vaccine (PCV13). Human Vaccines. 2011;7(10):1012-8. DOI: https://doi.org/10.4161/hv.7.10.16794

Devine VT, Cleary DW, Jefferies JM, Anderson R, Morris DE, Tuck AC, et al. The rise and fall of pneumococcal serotypes carried in the PCV era. Vaccine. 2017;35(9):1293-8. DOI: https://doi.org/10.1016/j.vaccine.2017.01.035

Bogaert D, De Groot R, Hermans PW. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis. 2004;4(3):144-54. DOI: https://doi.org/10.1016/S1473-3099(04)00938-7

Lipsitch M, Siber GR. How Can Vaccines Contribute to Solving the Antimicrobial Resistance Problem? mBio. 2016;7(3). DOI: https://doi.org/10.1128/mBio.00428-16

National Vaccine Advisory Committee. A Call for Greater Consideration for the Role of Vaccines in National Strategies to Combat Antibiotic-Resistant Bacteria: Recommendations from the National Vaccine Advisory Committee: Approved by the National Vaccine Advisory Committee on June 10, 2015. Public Health Rep. 2016;131(1):11-6. DOI: https://doi.org/10.1177/003335491613100105

von Gottberg A, de Gouveia L, Tempia S, Quan V, Meiring S, von Mollendorf C, et al; GERMS-SA Investigators. Effects of vaccination on invasive pneumococcal disease in South Africa. N Engl J Med. 2014;371(20):1889-99. DOI: https://doi.org/10.1056/NEJMoa1401914

Stacey HL, Rosen J, Peterson JT, Williams-Diaz A, Gakhar V, Sterling TM, et al. Safety and immunogenicity of 15-valent pneumococcal conjugate vaccine (PCV-15) compared to PCV-13 in healthy older adults. Hum Vaccin Immunother. 2019;15(3):530-9. DOI: https://doi.org/10.1080/21645515.2018.1532249

Shirley M. 20-Valent Pneumococcal Conjugate Vaccine: A Review of Its Use in Adults. Drugs. 2022;82(9):989-99. DOI: https://doi.org/10.1007/s40265-022-01733-z

Pichichero M, Kaur R, Scott DA, Gruber WC, Trammel J, Almudevar A, et al. Effectiveness of 13-valent pneumococcal conjugate vaccination for protection against acute otitis media caused by Streptococcus pneumoniae in healthy young children: a prospective observational study. Lancet Child Adolesc Health. 2018;2(8):561-8. DOI: https://doi.org/10.1016/S2352-4642(18)30168-8

Kobayashi M, Farrar JL, Gierke R, Leidner AJ, Campos-Outcalt D, Morgan RL, et al; ACIP Pneumococcal Vaccines Work Group; CDC Contributors. Use of 15-Valent Pneumococcal Conjugate Vaccine Among U.S. Children: Updated Recommendations of the Advisory Committee on Immunization Practices - United States, 2022. MMWR Morb Mortal Wkly Rep. 2022;71(37):1174-81. DOI: https://doi.org/10.15585/mmwr.mm7104a1

Kraicer-Melamed H, O'Donnell S, Quach C. The effectiveness of pneumococcal polysaccharide vaccine 23 (PPV23) in the general population of 50 years of age and older: A systematic review and meta-analysis. Vaccine. 2016;34(13):1540-50. DOI: https://doi.org/10.1016/j.vaccine.2016.02.024

World Health Organization. Influenza (Seasonal). Available at: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal). Accessed on 15 October 2024.

Committee on Infectious Diseases. Recommendations for Prevention and Control of Influenza in Children, 2024-2025: Policy Statement. Pediatrics. 2024;154(4):e2024068507.

Young BE, Chen M. Influenza in temperate and tropical Asia: a review of epidemiology and vaccinology. Hum Vaccin Immunother. 2020;16(7):1659-67. DOI: https://doi.org/10.1080/21645515.2019.1703455

World Health Organization. Managing seasonal vaccination policies and coverage in the European Region. Available at: https://www.who.int/ europe/activities/managing-seasonal-vaccination-policies-and-coverage-in-the-european-region. Accessed on 22 December 2024.

7th MENA-ISN study group; Al Awaidi S, Abusrewil S, AbuHasan M, Akcay M, Aksakal FNB, Bashir U, et al. Influenza vaccination situation in Middle-East and North Africa countries: Report of the 7th MENA Influenza Stakeholders Network (MENA-ISN). J Infect Public Health. 2018;11(6):845-50. DOI: https://doi.org/10.1016/j.jiph.2018.07.003

World Health Organization. Seasonal Influenza Vaccine Use in Low and Middle Income Countries in the Tropics and Subtropics. Available at: https://www.who.int/publications/i/item/9789241565097. Accessed on 22 December 2024.

McMahon AW, Iskander JK, Haber P, Braun MM, Ball R. Inactivated influenza vaccine (IIV) in children <2 years of age: examination of selected adverse events reported to the Vaccine Adverse Event Reporting System (VAERS) after thimerosal-free or thimerosal-containing vaccine. Vaccine. 2008;26(3):427-9. DOI: https://doi.org/10.1016/j.vaccine.2007.10.071

Chung JR, Flannery B, Thompson MG, Gaglani M, Jackson ML, Monto AS, et al. Seasonal Effectiveness of Live Attenuated and Inactivated Influenza Vaccine. Pediatrics. 2016;137(2):e20153279. DOI: https://doi.org/10.1542/peds.2015-3279

Becker T, Elbahesh H, Reperant LA, Rimmelzwaan GF, Osterhaus A. Influenza Vaccines: Successes and Continuing Challenges. J Infect Dis. 2021;224(12):S405-19. DOI: https://doi.org/10.1093/infdis/jiab269

European Medicines Agency. EU recommendations for 2024/2025 seasonal flu vaccine composition. Available at: https://www.ema.europa.eu/en/news/ eu-recommendations-2024-2025-seasonal-flu-vaccine-composition. Accessed on 26 March 2024.

FDA. Use of Trivalent Influenza Vaccines for the 2024-2025 U.S. Influenza Season. Available at: https://www.fda.gov/vaccines-blood-biologics/lot-release/use-trivalent-influenza-vaccines-2024-2025-us-influenza-season. Accessed on 22 December 2024.

World Health Organization. Recommendations announced for influenza vaccine composition for the 2024-2025 northern hemisphere influenza season. Available at: https://www.who.int/news/item/23-02-2024-recommendations-announced-for-influenza-vaccine-composition-for-the-2024-2025-northern-hemisphere-influenza-season. Accessed on 22 December 2024.

Guo J, Chen X, Guo Y, Liu M, Li P, Tao Y, et al. Real-world effectiveness of seasonal influenza vaccination and age as effect modifier: A systematic review, meta-analysis and meta-regression of test-negative design studies. Vaccine. 2024;42(8):1883-91. DOI: https://doi.org/10.1016/j.vaccine.2024.02.059

Minozzi S, Lytras T, Gianola S, Gonzalez-Lorenzo M, Castellini G, Galli C, et al. Comparative efficacy and safety of vaccines to prevent seasonal influenza: A systematic review and network meta-analysis. EClinicalMedicine. 2022;46:101331. DOI: https://doi.org/10.1016/j.eclinm.2022.101331

Garai R, Jánosi Á, Krivácsy P, Herczeg V, Kói T, Nagy R, et al. Head-to-head comparison of influenza vaccines in children: a systematic review and meta-analysis. J Transl Med. 2024;22(1):903. DOI: https://doi.org/10.1186/s12967-024-05676-9

World Health Organization. Global Influenza Strategy 2019–2030. Available at: https://www.who .int/publications/i/item/9789241515320. Accessed on 22 December 2024.

Cowling BJ, Fang VJ, Nishiura H, Chan KH, Ng S, Ip DK, et al. Increased risk of noninfluenza respiratory virus infections associated with receipt of inactivated influenza vaccine. Clin Infect Dis. 2012;54(12):1778-83. DOI: https://doi.org/10.1093/cid/cis307

World Health Organization. Respiratory Syncytial Virus (RSV) disease. Available at: https://www. who.int/teams/health-product-policy-and-standards/ standards-and-specifications/norms-and-standards/ vaccine-standardization/respiratory-syncytial-virus-disease. Accessed on 22 December 2024.

Mazur NI, Terstappen J, Baral R, Bardají A, Beutels P, Buchholz UJ, et al. Respiratory syncytial virus prevention within reach: the vaccine and monoclonal antibody landscape. Lancet Infect Dis. 2023;23(1):e2-e21. DOI: https://doi.org/10.1016/S1473-3099(22)00291-2

FDA. FDA Approves First Respiratory Syncytial Virus (RSV) Vaccine. Available at: https://www.fda .gov/news-events/press-announcements/fda-approve s-first-respiratory-syncytial-virus-rsv-vaccine. Accessed on 22 December 2024.

FDA. FDA Approves First Vaccine for Pregnant Individuals to Prevent RSV in Infants. Available at: https://www.fda.gov/news-events/press-announce ments/fda-approves-first-vaccine-pregnant-individ uals-prevent-rsv-infants. Accessed on 22 December 2024.

Falloon J, Yu J, Esser MT, Villafana T, Yu L, Dubovsky F, et al. An Adjuvanted, Postfusion F Protein-Based Vaccine Did Not Prevent Respiratory Syncytial Virus Illness in Older Adults. J Infect Dis. 2017;216(11):1362-70. DOI: https://doi.org/10.1093/infdis/jix503

Zeng B, Liu X, Yang Q, Wang J, Ren Q, Sun F. Efficacy and safety of vaccines to prevent respiratory syncytial virus infection in infants and older adults: A systematic review and meta-analysis. Int J Infect Dis. 2024;146:107118. DOI: https://doi.org/10.1016/j.ijid.2024.107118

World Health Organization. COVID-19 vaccine tracker and landscape. Available at: https://www. who.int/teams/blueprint/covid-19/covid-19-vaccine-tracker-and-landscape. Accessed on 22 December 2024.

COVID-19 Vaccine Tracker. COVID-19 vaccine development and approvals tracker. Available at: https://covid19.trackvaccines.org/. Accessed on 22 December 2024.

Srinivasan S, Cui H, Gao Z, Liu M, Lu S, Mkandawire W, et al. Structural Genomics of SARS-CoV-2 Indicates Evolutionary Conserved Functional Regions of Viral Proteins. Viruses. 2020;12(4):360. DOI: https://doi.org/10.3390/v12040360

Khobragade A, Bhate S, Ramaiah V, Deshpande S, Giri K, Phophle H, et al. Efficacy, safety, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): the interim efficacy results of a phase 3, randomised, double-blind, placebo-controlled study in India. Lancet (London, England). 2022;399(10332):1313-21. DOI: https://doi.org/10.1016/S0140-6736(22)00151-9

Rosenberg ES, Dorabawila V, Easton D, Bauer UE, Kumar J, Hoen R, et al. Covid-19 Vaccine Effectiveness in New York State. N Engl J Med. 2022;386(2):116-27. DOI: https://doi.org/10.1056/NEJMoa2116063

Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al; C4591001 Clinical Trial Group. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383(27):2603-15. DOI: https://doi.org/10.1056/NEJMoa2034577

Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al; COVE Study Group. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384(5):403-16. DOI: https://doi.org/10.1056/NEJMoa2035389

Tauzin A, Gong SY, Beaudoin-Bussières G, Vézina D, Gasser R, Nault L, et al. Strong humoral immune responses against SARS-CoV-2 Spike after BNT162b2 mRNA vaccination with a 16-week interval between doses. Cell Host Microbe. 2022;30(1):97-109. DOI: https://doi.org/10.1016/j.chom.2021.12.004

Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet (London, England). 2021;396(10267):1979-93. DOI: https://doi.org/10.1016/S0140-6736(20)32466-1

Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F, et al. Safety and Efficacy of the NVX-CoV2373 Coronavirus Disease 2019 Vaccine at Completion of the Placebo-Controlled Phase of a Randomized Controlled Trial. Clin Infect Dis. 2023;76(3):398-407. DOI: https://doi.org/10.1093/cid/ciac803

Bhiman JN, Richardson SI, Lambson BE, Kgagudi P, Mzindle M, Kaldine H, et al. Novavax NVX-COV2373 triggers neutralization of Omicron sub-lineages. Sci Rep. 2023;13(1):1222. DOI: https://doi.org/10.1038/s41598-023-27698-x

Beladiya J, Kumar A, Vasava Y, Parmar K, Patel D, Patel S, et al. Safety and efficacy of COVID-19 vaccines: A systematic review and meta-analysis of controlled and randomized clinical trials. Rev Med Virol. 2024;34(1):e2507. DOI: https://doi.org/10.1002/rmv.2507

Downloads

Published

2025-01-24

How to Cite

Abdullah, M. Y., Alanazi, F. M., Gandurah, S. F., Altufayif, D. A., Alghamdi, A. M., Halawani, O. A., Almudarhem, F. F., Al-Otaibe, R. I., Allathiqani, O. M., & Alasmari, A. A. (2025). Assessing the effectiveness of vaccination strategies against respiratory pathogens⁠. International Journal Of Community Medicine And Public Health, 12(2), 967–973. https://doi.org/10.18203/2394-6040.ijcmph20250065

Issue

Section

Review Articles