Assessment of the microbiota in persistent periapical lesions and its clinical implications

Authors

  • Waleed Khalid Alshargawi Department of Endodontics, Al Thager Hospital, Jeddah, Saudi Arabia
  • Samaher Khaled Alfawzan Dental Department, Alswarqiah Health Center, Medina, Saudi Arabia
  • Ghalya Abdulrahman Alrobayan College of Dentistry, Riyadh Elm University, Riyadh, Saudi Arabia
  • Faisal Abdullah Alsuwailem Advanced Education in General Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia
  • Fatimah Salman Almishari College of Dentistry, Imam Abdulrahman Bin Faisal University, Eastern Province, Saudi Arabia
  • Mahfoud Samer Kanzou College of Dentistry, Hama University, Hama, Syria
  • Abdulrahman Ali Alqahtani College of Dentistry, Riyadh Elm University, Riyadh, Saudi Arabia
  • Razan Turki Alruwaili Dental Department, Prince Sultan Military Hospital, Riyadh, Saudi Arabia

DOI:

https://doi.org/10.18203/2394-6040.ijcmph20250054

Keywords:

Antimicrobial therapies, CBCT diagnostics, Microbial diversity, Persistent periapical lesions, Regenerative endodontics

Abstract

Persistent periapical lesions are chronic inflammatory conditions characterized by microbial colonization, immune responses and progressive tissue destruction. These lesions, often resistant to conventional endodontic therapy, are associated with diverse microbial communities, including anaerobic bacteria, fungi and viruses. Advanced diagnostic tools such as cone-beam computed tomography (CBCT) and next-generation sequencing have significantly improved lesion detection and microbial profiling, enabling precise treatment planning. CBCT provides detailed imaging of lesion size and bone loss, while molecular diagnostics reveal complex microbial compositions, including unculturable species and resistance genes. The therapeutic management of persistent lesions involves mechanical debridement, antimicrobial agents and emerging adjuncts. Sodium hypochlorite, chlorhexidine and bioceramic sealers are effective in disrupting biofilms and enhancing sealing properties. Advanced modalities such as antimicrobial photodynamic therapy and probiotics offer innovative approaches to combat resistant pathogens and restore microbial balance. Regenerative strategies, including stem cell therapies and platelet-rich fibrin, show promise for restoring periapical tissue structure and function. Prognostic evaluation relies on lesion size, microbial diversity and systemic health factors. Larger lesions and those linked to systemic conditions like diabetes exhibit lower healing rates, emphasizing the need for comprehensive care. Chronic inflammation from periapical lesions has broader systemic implications, including associations with cardiovascular disease and diabetes, necessitating interdisciplinary collaboration. Future directions in managing persistent periapical lesions include artificial intelligence-driven diagnostics and personalized treatment strategies. Artificial intelligence can enhance predictive analytics, while regenerative approaches aim to repair biological tissues rather than replace them mechanically. Together, these advancements highlight the need for integrated, evidence-based approaches to improve outcomes in the diagnosis, treatment and prognosis of persistent periapical lesions. This integrated understanding bridges the gap between clinical management and the broader systemic implications of chronic oral infections.

Metrics

Metrics Loading ...

References

Handal T, Caugant DA, Olsen I, Sunde PT. Bacterial diversity in persistent periapical lesions on root-filled teeth. J Oral Microbiol. 2009;1(1):1946. DOI: https://doi.org/10.3402/jom.v1i0.1946

Pereira R, Rodrigues VAA, Furtado W, Gueiros S, Pereira G, Avila-Campos MJ. Microbial analysis of root canal and periradicular lesion associated to teeth with endodontic failure. Anaerobe. 2017;48:12-8. DOI: https://doi.org/10.1016/j.anaerobe.2017.06.016

Siqueira Jr JF, Rôças IN. Clinical implications and microbiology of bacterial persistence after treatment procedures. J Endo. 2008;34(11):1291-301. DOI: https://doi.org/10.1016/j.joen.2008.07.028

Tzanetakis GN, Azcarate-Peril MA, Zachaki S. Comparison of bacterial community composition of primary and persistent endodontic infections using pyrosequencing. Journal of Endo. 2015;41(8):1226-33. DOI: https://doi.org/10.1016/j.joen.2015.03.010

Subramanian K, Mickel AK. Molecular analysis of persistent periradicular lesions and root ends reveals a diverse microbial profile. J of Endodontics. 2009;35(7):950-7. DOI: https://doi.org/10.1016/j.joen.2009.04.010

Cavalla F, Letra A, Silva RM, Garlet G. Determinants of periodontal/periapical lesion stability and progression. J of Dental Research. 2021;100(1):29-36. DOI: https://doi.org/10.1177/0022034520952341

Arias‐Moliz MT, Pérez‐Carrasco V, Uroz‐Torres D, Santana Ramos JD, García‐Salcedo JA, Soriano M. Identification of keystone taxa in root canals and periapical lesions of post‐treatment endodontic infections: Next generation microbiome research. Inter Endodon J. 2024;5:78-9. DOI: https://doi.org/10.1111/iej.14046

Gan G, Luo Y, Zeng Y. Gut microbiota dysbiosis links chronic apical periodontitis to liver fibrosis in nonalcoholic fatty liver disease: Insights from a mouse model. Int Endo J. 2024;57(11):1608-22. DOI: https://doi.org/10.1111/iej.14119

Wang W, Qu Y, Chen H, Huang L, Gu L. The microbial co-infection interaction network in apical periodontitis with sinus tracts. J Dent. 2025;153:105496. DOI: https://doi.org/10.1016/j.jdent.2024.105496

Lin B, Wang J, Zhang Y. Bacterial dynamics in the progression of caries to apical periodontitis in primary teeth of children with severe early childhood caries. Frontiers in Microbiol. 2024;15:1418261. DOI: https://doi.org/10.3389/fmicb.2024.1418261

Gan G, Zhang R, Zeng Y. Fecal microbiota transplantation validates the importance of gut microbiota in an ApoE−/− mouse model of chronic apical periodontitis-induced atherosclerosis. BMC Oral Health. 2024;24(1):1455. DOI: https://doi.org/10.1186/s12903-024-05230-5

Mehta RJ. The interplay between gut dysbiosis and diabetic nephropathy: implications for treatment and management. Clin Diabetol. 2024;13(4):189-92.

Ma R, Deng Z, Du Q. Enterococcus faecalis extracellular vesicles promote apical periodontitis. J Dental Res. 2024;103(6):672-82. DOI: https://doi.org/10.1177/00220345241230867

Colaco AS. Extreme resistance of Enterococcus faecalis and its role in endodontic treatment failure. Prog Med Sci. 2018;2(1):9-13. DOI: https://doi.org/10.5455/pms.20180116070109

Sato Y, Kishi J, Suzuki K, Nakamura H, Hayakawa T. Sonic extracts from a bacterium related to periapical disease activate gelatinase A and inactivate tissue inhibitor of metalloproteinases TIMP‐1 and TIMP‐2. Int Endod J. 2009;42(12):1104-11. DOI: https://doi.org/10.1111/j.1365-2591.2009.01640.x

Bronzato JD, Davidian M, de Castro M. Bacteria and virulence factors in periapical lesions associated with teeth following primary and secondary root canal treatment. Int Endo J. 2021;54(5):660-671. DOI: https://doi.org/10.1111/iej.13457

Kumar J, Sharma R, Sharma M, Prabhavathi V, Paul J, Chowdary CD. Presence of Candida albicans in root canals of teeth with apical periodontitis and evaluation of their possible role in failure of endodontic treatment. J Int Oral Health: JIOH. 2015;7(2):42.

Jain H, Mulay S, Mullany P. Persistence of endodontic infection and Enterococcus faecalis: Role of horizontal gene transfer. Gene reports. 2016;5:112-6. DOI: https://doi.org/10.1016/j.genrep.2016.09.010

Yoshida S, Nakazawa M, Kawasaki M, Ambrosini YM. Bacterial attachment and junctional transport function in induced apical-out polarized and differentiated canine intestinal organoids. Frontiers in Veterinary Science. 2024;11:1483421. DOI: https://doi.org/10.3389/fvets.2024.1483421

Karamifar K, Tondari A, Saghiri MA. Endodontic periapical lesion: an overview on the etiology, diagnosis and current treatment modalities. European Endod J. 2020;5(2):54. DOI: https://doi.org/10.14744/eej.2020.42714

Kruse C, Spin-Neto R, Reibel J, Wenzel A, Kirkevang L-L. Diagnostic validity of periapical radiography and CBCT for assessing periapical lesions that persist after endodontic surgery. Dentomaxillofacial Radiol. 2017;46(7):87-9. DOI: https://doi.org/10.1259/dmfr.20170210

Çalışkan M, Kaval M, Tekin U, Ünal T. Radiographic and histological evaluation of persistent periapical lesions associated with endodontic failures after apical microsurgery. Int Endo J. 2016;49(11):1011-9. DOI: https://doi.org/10.1111/iej.12554

Abbott PV. Classification, diagnosis and clinical manifestations of apical periodontitis. Endodontic topics. 2004;8(1):36-54. DOI: https://doi.org/10.1111/j.1601-1546.2004.00098.x

Segura-Egea JJ, Martín-González J, Cabanillas-Balsera D, Fouad AF, Velasco-Ortega E, López-López J. Association between diabetes and the prevalence of radiolucent periapical lesions in root-filled teeth: systematic review and meta-analysis. Clinical oral investigations. 2016;20:1133-41. DOI: https://doi.org/10.1007/s00784-016-1805-4

Restrepo‐Restrepo F, Cañas‐Jiménez S, Romero‐Albarracín R, Villa‐Machado P, Pérez‐Cano M, Tobón‐Arroyave S. Prognosis of root canal treatment in teeth with preoperative apical periodontitis: a study with cone‐beam computed tomography and digital periapical radiography. International endodontic journal. 2019;52(11):1533-46. DOI: https://doi.org/10.1111/iej.13168

Rotstein I, Simon JH. The endo‐perio lesion: a critical appraisal of the disease condition. Endodontic Topics. 2006;13(1):34-56. DOI: https://doi.org/10.1111/j.1601-1546.2006.00211.x

Downloads

Published

2025-01-23

How to Cite

Alshargawi, W. K., Alfawzan, S. K., Alrobayan, G. A., Alsuwailem, F. A., Almishari, F. S., Kanzou, M. S., Alqahtani, A. A., & Alruwaili, R. T. (2025). Assessment of the microbiota in persistent periapical lesions and its clinical implications. International Journal Of Community Medicine And Public Health, 12(2), 982–987. https://doi.org/10.18203/2394-6040.ijcmph20250054

Issue

Section

Review Articles