The role of SGLT2 inhibitors in protecting cardiovascular health: beyond glycaemic control
DOI:
https://doi.org/10.18203/2394-6040.ijcmph20250050Keywords:
Sodium-glucose cotransporter type 2 inhibitors, SGLT2 inhibitors, Gliflozins, Cardiovascular health, Cardioprotective effects, Empagliflozin, DapagliflozinAbstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors, also known as Gliflozins, are a class of anti-diabetic medications initially developed for glycemic control in patients with type 2 diabetes mellitus (T2DM). T2DM patients are at a significantly higher risk of adverse outcomes, including heart failure, atherosclerotic cardiovascular disease, and renal diseases. Unlike traditional hypoglycemic agents, SGLT2 inhibitors have demonstrated notable cardiovascular benefits. Four SGLT2 inhibitors-Canagliflozin, Empagliflozin, Ertugliflozin, and Dapagliflozin—are currently approved by regulatory agencies such as the European Medicines Agency and the US Food and Drug Administration. Various mechanisms have been proposed to explain the cardioprotective effects of SGLT2 inhibitors, extending their therapeutic potential beyond glycemic control. The renal benefits of SGLT2 inhibitors contribute to cardiovascular outcomes, including reductions in albuminuria and slowing of chronic kidney disease progression. This review explores the impact of SGLT2 inhibitors on cardiovascular health in diabetic and non-diabetic populations, highlighting their ability to reduce renal and cardiovascular risks. Current evidence underscores their transformative role in managing T2DM and cardiovascular diseases. Furthermore, these findings pave the way for the development of innovative therapeutic strategies targeting diabetes and cardiovascular comorbidities. Additional research is needed to better understand the potential benefits of SGLT2 inhibitors in non-diabetic individuals.
Metrics
References
Mondal S, Pramanik S, Khare VR, Fernandez CJ, Pappachan JM. Sodium glucose cotransporter-2 inhibitors and heart disease: Current perspectives. World J Cardiol. 2024;16(5):240-59. DOI: https://doi.org/10.4330/wjc.v16.i5.240
Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovascular Diabetol. 2018;17(1):83. DOI: https://doi.org/10.1186/s12933-018-0728-6
Ni L, Yuan C, Chen G, Zhang C, Wu X. SGLT2i: beyond the glucose-lowering effect. Cardiovas. 2020;19(1):98. DOI: https://doi.org/10.1186/s12933-020-01071-y
Home PD, Pocock SJ, Beck-Nielsen H. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet (London, England). 2009;373(9681):2125-35. DOI: https://doi.org/10.1016/S0140-6736(09)60953-3
Wilcox T, De Block C, Schwartzbard AZ, Newman JD. Diabetic Agents, From Metformin to SGLT2 Inhibitors and GLP1 Receptor Agonists: JACC Focus Seminar. J Am Coll Cardiol. 2020;75(16):1956-74. DOI: https://doi.org/10.1016/j.jacc.2020.02.056
Zinman B, Lachin JM, Inzucchi SE. Empagliflozin, Cardiovascular outcomes, and mortality in type 2 diabetes. The New England J Med. 2016;374(11):1094. DOI: https://doi.org/10.1056/NEJMc1600827
Lawton JS, Tamis-Holland JE, Bangalore S. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145(3):e18-114. DOI: https://doi.org/10.1161/CIR.0000000000001060
8. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European heart journal. 2021;42(36):3599-3726. DOI: https://doi.org/10.1093/eurheartj/ehab368
Braunwald E. Gliflozins in the Management of Cardiovascular Disease. The New England J Med. 2022;386(21):2024-34. DOI: https://doi.org/10.1056/NEJMra2115011
Nasiri AR, Rodrigues MR, Li Z, Leitner BP, Perry RJ. SGLT2 inhibition slows tumor growth in mice by reversing hyperinsulinemia. Cancer & Metabol. 2019;7:10. DOI: https://doi.org/10.1186/s40170-019-0203-1
Villani LA, Smith BK, Marcinko K. The diabetes medication Canagliflozin reduces cancer cell proliferation by inhibiting mitochondrial complex-I supported respiration. Molecular Metabol. 2016;5(10):1048-56. DOI: https://doi.org/10.1016/j.molmet.2016.08.014
Wu W, Zhang Z, Jing D, et al. SGLT2 inhibitor activates the STING/IRF3/IFN-β pathway and induces immune infiltration in osteosarcoma. Cell Death Dis. 2022;13(6):523. DOI: https://doi.org/10.1038/s41419-022-04980-w
Training C. Chapter 4: Searching for and selecting studies. Available at: https://training.cochrane. Accessed on 13 November 2024.
Fatima A, Rasool S, Devi S. Exploring the cardiovascular benefits of sodium-glucose cotransporter-2 (SGLT2) inhibitors: expanding horizons beyond diabetes management. Cureus. 2023;15(9):46243. DOI: https://doi.org/10.7759/cureus.46243
Neal B, Perkovic V, Mahaffey KW. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017;377(7):644-57. DOI: https://doi.org/10.1056/NEJMoa1611925
Johnston R, Uthman O, Cummins E, et al. Canagliflozin, dapagliflozin and empagliflozin monotherapy for treating type 2 diabetes: systematic review and economic evaluation. Health technology assessment (Winchester, England). 2017;21(2):1-218. DOI: https://doi.org/10.3310/hta21020
Packer M, Anker SD, Butler J, Filippatos G, Zannad F. Effects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure: Proposal of a Novel Mechanism of Action. JAMA Cardiol. 2017;2(9):1025-9. DOI: https://doi.org/10.1001/jamacardio.2017.2275
Heidenreich PA, Bozkurt B, Aguilar D. AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145(18):895-1032. DOI: https://doi.org/10.1161/CIR.0000000000001073
McMurray JJV, DeMets DL, Inzucchi SE. A trial to evaluate the effect of the sodium-glucose co-transporter 2 inhibitor dapagliflozin on morbidity and mortality in patients with heart failure and reduced left ventricular ejection fraction (DAPA-HF). European J Heart Fail. 2019;21(5):665-75. DOI: https://doi.org/10.1002/ejhf.1432
Anker SD, Butler J, Filippatos G, et al. Empagliflozin in heart failure with a preserved ejection fraction. The New England J Med. 2021;385(16):1451-61. DOI: https://doi.org/10.1056/NEJMoa2107038
Lenneman CG, Sawyer DB. Cardio-Oncology: An Update on Cardiotoxicity of Cancer-Related Treatment. Circulation. 2016;118(6):1008-20. DOI: https://doi.org/10.1161/CIRCRESAHA.115.303633
Cardinale D, Iacopo F, Cipolla CM. Cardiotoxicity of Anthracyclines. Frontiers in Cardiovas. 2020;7:26. DOI: https://doi.org/10.3389/fcvm.2020.00026
Gongora CA, Drobni ZD, Quinaglia Araujo Costa Silva T. Sodium-glucose co-transporter-2 inhibitors and cardiac outcomes among patients treated with anthracyclines. JACC Heart. 2022;10(8):559-67. DOI: https://doi.org/10.1016/j.jchf.2022.03.006
Abdel-Qadir H, Carrasco R, Austin PC. The association of sodium-glucose cotransporter 2 inhibitors with cardiovascular outcomes in anthracycline-treated patients with cancer. JACC Cardio Oncol. 2023;5(3):318-28. DOI: https://doi.org/10.1016/j.jaccao.2023.03.011
Zelniker TA, Wiviott SD, Raz I. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet (London, England). 2019;393(10166):31-9. DOI: https://doi.org/10.1016/S0140-6736(18)32590-X
26. Chen B, Guo J, Ye H, Wang X, Feng Y. Role and molecular mechanisms of SGLT2 inhibitors in pathological cardiac remodeling (Review). Molecular medicine reports. 2024;29(5). DOI: https://doi.org/10.3892/mmr.2024.13197
Wiviott SD, Raz I, Bonaca MP. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. The New England J Med. 2019;380(4):347-57. DOI: https://doi.org/10.1056/NEJMoa1812389
Bose D, Maurya M, Konwar M. Impact of sodium-glucose co-transporter 2 inhibitors on renal outcomes in patients of diabetes mellitus: A meta-analysis of landmark renal and cardiovascular outcome trials. Indian J Pharmacol. 2023;55(2):119-27. DOI: https://doi.org/10.4103/ijp.ijp_342_21
Vaduganathan M, Docherty KF, Claggett BL. SGLT-2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet (London, England). 2022;400(10354):757-67. DOI: https://doi.org/10.1016/S0140-6736(22)01429-5
Heerspink HJL, Stefánsson BV, Correa-Rotter R. Dapagliflozin in patients with chronic kidney disease. The New England J Med. 2020;383(15):1436-46. DOI: https://doi.org/10.1056/NEJMoa2024816
Verma S, Rawat S, Ho KL. Empagliflozin increases cardiac energy production in diabetes: novel translational insights into the heart failure benefits of sglt2 inhibitors. JACC Basic to Translational Sci. 2018;3(5):575-87. DOI: https://doi.org/10.1016/j.jacbts.2018.07.006
Wada T, Mori-Anai K, Kawaguchi Y. Renal, cardiovascular and safety outcomes of canagliflozin in patients with type 2 diabetes and nephropathy in East and South-East Asian countries: results from the canagliflozin and renal events in diabetes with established nephropathy clinical evaluation trial. J of Diabetes Investig. 2022;13(1):54-64. DOI: https://doi.org/10.1111/jdi.13624
Jyotsna F, Mahfooz K, Patel T, et al. A Systematic Review and Meta-Analysis on the Efficacy and Safety of Finerenone Therapy in Patients with Cardiovascular and Chronic Kidney Diseases in Type 2 Diabetes Mellitus. Cureus. 2023;15(7):41746. DOI: https://doi.org/10.7759/cureus.41746
Aimo A, Castiglione V, Borrelli C. Oxidative stress and inflammation in the evolution of heart failure: From pathophysiology to therapeutic strategies. European journal of preventive cardiology. 2020;27(5):494-510. DOI: https://doi.org/10.1177/2047487319870344
Kolijn D, Pabel S, Tian Y, et al. Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation. Cardiovascular research. 2021;117(2):495-507. DOI: https://doi.org/10.1093/cvr/cvaa123
Wang J, Huang X, Liu H. Empagliflozin ameliorates diabetic cardiomyopathy via attenuating oxidative stress and improving mitochondrial function. Oxidative medicine and cellular longevity. 2022;2:1122494. DOI: https://doi.org/10.1155/2022/1122494
De Jong KA, Lopaschuk GD. Complex energy metabolic changes in heart failure with preserved ejection fraction and heart failure with reduced ejection fraction. The Canadian J of Cardiol. 2017;33(7):860-71. DOI: https://doi.org/10.1016/j.cjca.2017.03.009
Li X, Lu Q, Qiu Y. Direct cardiac actions of the sodium glucose co-transporter 2 inhibitor empagliflozin improve myocardial oxidative phosphorylation and attenuate pressure-overload heart failure. J Am Heart Associ. 2021;10(6):e018298. DOI: https://doi.org/10.1161/JAHA.120.018298
Van Steenbergen A, Balteau M, Ginion A. Sodium-myoinositol cotransporter-1, SMIT1, mediates the production of reactive oxygen species induced by hyperglycemia in the heart. Scientific reports. 2017;7:41166. DOI: https://doi.org/10.1038/srep41166
Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nature reviews Cardiology. 2020;17(12):761-72. DOI: https://doi.org/10.1038/s41569-020-0406-8
Tripolt NJ, Kolesnik E, Pferschy PN. Impact of EMpagliflozin on cardiac function and biomarkers of heart failure in patients with acute MYocardial infarction-The EMMY trial. American heart journal. 2020;221:39-47. DOI: https://doi.org/10.1016/j.ahj.2019.12.004
Lewinski D, Tripolt NJ, Sourij H. Ertugliflozin to reduce arrhythmic burden in ICD/CRT patients (ERASe-trial) - A phase III study. Am Heart J. 2022;246:152-60. DOI: https://doi.org/10.1016/j.ahj.2022.01.008
Aimo A, Vergaro G, González A. Cardiac remodelling-part 2: clinical, imaging and laboratory findings. a review from the study group on biomarkers of the heart failure association of the european society of cardiology. European J Heart Fai. 2022;24(6):944-58. DOI: https://doi.org/10.1002/ejhf.2522
Lee MMY, Brooksbank KJM, Wetherall K. Effect of empagliflozin on left ventricular volumes in patients with type 2 diabetes, or prediabetes, and heart failure with reduced ejection fraction (SUGAR-DM-HF). Circulation. 2021;143(6):516-25. DOI: https://doi.org/10.1161/CIRCULATIONAHA.121.055067
Santos-Gallego CG, Vargas-Delgado AP, Requena-Ibanez JA. Randomized Trial of Empagliflozin in Nondiabetic Patients With Heart Failure and Reduced Ejection Fraction. J Am Coll Card. 2021;77(3):243-55. DOI: https://doi.org/10.1016/j.jacc.2020.11.008
Wu QQ, Xiao Y, Yuan Y. Mechanisms contributing to cardiac remodelling. Clinical Sci. 2017;131(18):2319-45. DOI: https://doi.org/10.1042/CS20171167
Frangogiannis NG. Cardiac fibrosis. Cardiovas. 2021;117(6):1450-88. DOI: https://doi.org/10.1093/cvr/cvaa324
Yurista SR, Silljé HHW, Oberdorf-Maass SU. Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. European J Heart Failure. 2019;21(7):862-73. DOI: https://doi.org/10.1002/ejhf.1473
Habibi J, Aroor AR, Sowers JR. Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes. Cardiovas Diabetol. 2017;16(1):9. DOI: https://doi.org/10.1186/s12933-016-0489-z
Anker SD, Khan MS, Butler J. Weight change and clinical outcomes in heart failure with reduced ejection fraction: insights from EMPEROR-Reduced. European J Heart Fail. 2023;25(1):117-27. DOI: https://doi.org/10.1002/ejhf.2728
Wheeler DC, Stefánsson BV, Jongs N. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial. The lancet Diabetes & Endocrinol. 2021;9(1):22-31. DOI: https://doi.org/10.1016/S2213-8587(20)30369-7
Huang G, Cheng Z, Hildebrand A. Diabetes impairs cardioprotective function of endothelial progenitor cell-derived extracellular vesicles via H3K9Ac inhibition. Theranostics. 2022;12(9):4415-30. DOI: https://doi.org/10.7150/thno.70821