A study on IL-35 gene polymorphism and mRNA expression in patients with rheumatic heart disease
DOI:
https://doi.org/10.18203/2394-6040.ijcmph20250307Keywords:
Cytokines, Interleukin-35, mRNA expression, Polymorphisms, Rheumatic heart diseaseAbstract
Background: Rheumatic heart disease (RHD) is a chronic heart valve condition affecting around 40 million people globally. Inflammatory cytokines, acting as messengers, play a role in immune responses in various rheumatic diseases. Anti-inflammatory cytokines, produced by B cells and T cells, act as regulatory molecules controlling pro-inflammatory responses. Among these, Interleukin-35 (IL-35) stands out as a promising target for potential therapies in autoimmune and inflammatory diseases. Genetic variations and expression levels of IL-35 genes might have an impact on individuals with RHD.
Methods: This study is aimed to explore the connection between gene polymorphisms and mRNA expression levels in both RHD patients and control subjects. The investigation involved 135 RHD patients and 140 control subjects, utilizing RT-PCR as the methodology.
Results: The findings revealed a significant association between RHD and heterozygous variant (GC) (OR-1.77, 95% CI 0.3-3.04) and minor allele (C) (OR-0.60, 95% CI 0.39-0.92) of the EBi3 (IL-35) gene. In addition, increased mRNA expressions were observed, with a mean of 2.23±1.14 for EBi3 and 2.50±1.53 for IL-12A, indicating a noteworthy association with RHD patients compared to the control subjects.
Conclusions: The current study propose that gene polymorphisms could impact IL-35 expression levels in RHD patients. However, further analysis involving a larger number of cases is needed to draw conclusive results.
Metrics
References
Peters F, Karthikeyan G, Abrams J. Rheumatic heart disease: current status of diagnosis and therapy. Cardiovasc Diagn Ther. 2020;10(2):305. DOI: https://doi.org/10.21037/cdt.2019.10.07
Guilherme L, Cury P, Demarchi L. Rheumatic heart disease: proinflammatory cytokines play a role in the progression and maintenance of valvular lesions. Am J Pathol. 2004;165(5):1583-91. DOI: https://doi.org/10.1016/S0002-9440(10)63415-3
Su LC, Liu XY, Huang AF. Emerging role of IL-35 in inflammatory autoimmune diseases. Autoimmun Rev. 2018;17(7):665-73. DOI: https://doi.org/10.1016/j.autrev.2018.01.017
Collison LW, Workman CJ, Kuo TT. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature. 2007;450(7169):566-9. DOI: https://doi.org/10.1038/nature06306
Kourko O, Seaver K, Odoardi N. IL-27, IL-30 and IL-35: a cytokine triumvirate in cancer. Front Oncol. 2019;9:969. DOI: https://doi.org/10.3389/fonc.2019.00969
Tedder TF. Leonard WJ. Regulatory B cells—IL-35 and IL-21 regulate the regulators. Nat Rev Rheumatol. 2014;10(8):452-3. DOI: https://doi.org/10.1038/nrrheum.2014.95
Wang RX, Yu CR, Dambuza I. Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat Med. 2014;20(6):633-41. DOI: https://doi.org/10.1038/nm.3554
Dixon KO, van der Kooij SW, Vignali DA. Human tolerogenic dendritic cells produce IL‐35 in the absence of other IL‐12 family members. Eur J Immunol. 2015;45(6):1736-47. DOI: https://doi.org/10.1002/eji.201445217
Livak KJ. Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402-8. DOI: https://doi.org/10.1006/meth.2001.1262
Guan Q, Gao X, Wang J. Cytokines in autoimmune disease. Mediators Inflamm. 2017;4:566-8. DOI: https://doi.org/10.1155/2017/5089815
Ye C, Yano H, Workman C. Interleukin-35: structure, function and its impact on immune-related diseases. J Interferon Cytokine Res. 2021;41(11):391-406. DOI: https://doi.org/10.1089/jir.2021.0147
Sika-Paotonu D, Beaton A, Raghu A. Acute rheumatic fever and rheumatic heart disease. Front Pharmacol. 2017;2:357-9. DOI: https://doi.org/10.1016/B978-0-12-803678-5.00385-4
Xin PL, Jie LF, Cheng Q, Pathogenesis and function of interleukin-35 in rheumatoid arthritis. Front Pharmacol. 2021;12:655114. DOI: https://doi.org/10.3389/fphar.2021.655114
Collison LW. Vignali DA. Interleukin‐35: odd one out or part of the family? Immunol Rev 2008;226(1):248-62. DOI: https://doi.org/10.1111/j.1600-065X.2008.00704.x
Xue W, Yan D, Kan Q. Interleukin-35 as an emerging player in tumor microenvironment. J Cancer. 2019;10(9):2074. DOI: https://doi.org/10.7150/jca.29170
Lin Y, Xue Y, Huang X. Association between interleukin-35 polymorphisms and coronary heart disease in the Chinese Zhuang population: a case–control study. Coron Artery Dis. 2018;29(5):423-8. DOI: https://doi.org/10.1097/MCA.0000000000000635
Zhang Y, Duan S, Wei X. Association between polymorphisms in FOXP3 and EBI3 genes and the risk for development of allergic rhinitis in Chinese subjects. Hum Immunol. 2012;73(9):939-45. DOI: https://doi.org/10.1016/j.humimm.2012.07.319
Hamidinia M, Boroujerdnia MG, Talaiezadeh A. Increased P-35, EBI3 transcripts and other Treg markers in peripheral blood mononuclear cells of breast cancer patients with different clinical stages. Adv Pharm Bull. 2015;5(2):261. DOI: https://doi.org/10.15171/apb.2015.036
Wu W, Jiang H, Li Y. IL-35 expression is increased in laryngeal squamous cell carcinoma and in the peripheral blood of patients. Oncol Lett. 2017;13(5):3303-8. DOI: https://doi.org/10.3892/ol.2017.5858