Unraveling innovative treatments for spinal muscular atrophy: a brief review
DOI:
https://doi.org/10.18203/2394-6040.ijcmph20242584Keywords:
Gene therapy, Spinal muscular atrophy, SMN1 gene, SMN2 gene, Efficacy, SMN proteinAbstract
In the past few years, there have been amazing breakthroughs in treating spinal muscular atrophy (SMA), which is a big deal considering it's been studied for over a hundred years. Now, there are three approved therapies that all work to increase SMN protein production. They do this by fixing the genetic problem either by replacing the faulty SMN1 gene or by helping the SMN2 gene produce more of the right kind of protein. One way they do this is by using a special virus called adeno- associated viral vectors (AAV9) to deliver the gene therapy because the SMN1 gene is small enough to fit inside. The paper discusses the evolution of SMA treatment, focusing on advancements like gene therapy and new drug treatments. It highlights challenges in interpreting efficacy, especially regarding disease classification. Despite successes, issues like limited trial populations and varying disease stages pose complexities in care. With expanding treatment options, including those in advanced development stages, the landscape of SMA management grows more intricate. However, the importance of timely diagnosis and interdisciplinary clinical management remains crucial, recognizing that despite drug treatments, many patients still face significant disease burdens. This article aims to give a quick rundown of spinal muscular atrophy, starting from when people first noticed the disease up until now, when there are some really cool new treatments that are changing how the disease affects people.
Metrics
References
Baranello G, Darras BT, Day JW, Deconinck N, Klein A, Masson R, et al. Risdiplam in Type 1 spinal muscular atrophy. 2021;384(10):915-23.
Ramdas S, Servais L. New treatments in spinal muscular atrophy: an overview of currently available data. Expert Opin Pharmacother. 2020;21(3):307-15.
Messina S, Sframeli M. New treatments in spinal muscular atrophy: positive results and new challenges. J Clin Med. 2020;9(7):2222.
Schorling DC, Pechmann A, Kirschner J. Advances in treatment of spinal muscular atrophy-new phenotypes, new challenges. J Neuromuscul Dis. 2020;7(1):1-13.
Nishio H, Niba ETE, Saito T, Okamoto K. Spinal muscular atrophy: The past, present, and future of diagnosis and treatment. international journal of molecular sciences. Int J Mol Sci. 2023;24(15):11939.
Albrechtsen SS, Born AP, Boesen MS. Nusinersen treatment of spinal muscular atrophy-a systematic review. Dan Med J. 2020;67(9):2200100.
Lindsey W, Ferrante L, Melendez-Zaidi A, Lotze T. Novel use of nusinersen in a premature neonate as a therapeutic bridge to onasemnogene abeparvovec-xioi. Neurology. 2022;98(18):3358.
Atsumi A, Yoneda T, Tsuchida K, Kagawa Y, Tominaga S, Kawase K, et al. Pharmacological and clinical profile of Onasemnogene Aveparvovec, the first gene therapy for spinal muscular atrophy (SMA). Folia Pharmacologica Japonica. 2022;157:1.
Prior TW, Leach ME, Finanger E. Spinal muscular atrophy. Avialable at: https://europepmc.org/article.
Ogbonmide T, Rathore R, Rangrej SB, Hutchinson S, Lewis M, Ojilere S, et al. Gene therapy for spinal muscular atrophy (SMA): A review of current challenges and safety considerations for onasemnogene abeparvovec (Zolgensma). Cureus. 2023;15:3.
Day JW. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 2021;20(4):284-93.
Zanoteli E, Araujo AP, Becker MM, Fortes CP, França Jr MC, Machado-Costa MC, et al. Consensus from the Brazilian Academy of Neurology for the diagnosis, genetic counseling, and use of disease-modifying therapies in 5q spinal muscular atrophy. Arquivos de Neuro-psiquiatria. 2024;82(1):441779503.
Prior TW, Krainer AR, Hua Y, Swoboda KJ, Snyder PC, Bridgeman SJ, et al. A positive modifier of spinal muscular atrophy in the SMN2 gene. Ame J Human Gen. 2009;85(3):408-13.
Ross LF, Kwon JM. Spinal muscular atrophy: past, present, and future. Neoreviews. 2019;20(8):437-51.
Mercuri E. Spinal muscular atrophy: from rags to riches. Neuromuscular Disorders. 2021;31(10):998-1003.
Wadman RI, van der Pol WL, Bosboom WM, Asselman FL, van den Berg LH, Iannaccone ST, et l. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database of Syst Rev. 2020;1:6282.
Wirth B, Karakaya M, Kye MJ, Mendoza-Ferreira N. Twenty-five years of spinal muscular atrophy research: from phenotype to genotype to therapy, and what comes next. Annual review of genomics and human genetics. 2020;21(1):231-61.
Messina S, Sframeli M, Maggi L, D’Amico A, Bruno C, Comi G, et al. Spinal muscular atrophy: state of the art and new therapeutic strategies. Neurological Sciences. 2021:1-10.
Kakazu J, Walker NL, Babin KC, Trettin KA, Lee C, Sutker PB, et al. Risdiplam for the use of spinal muscular atrophy. Orthopedic reviews. 2021;13:2.
Anhuf D, Eggermann T, Rudnik‐Schöneborn S, Zerres K. Determination of SMN1 and SMN2 copy number using TaqMan technology. Human mutation. 2003;22(1):74-8.
Mercuri E, Bertini E, Iannaccone ST. Childhood spinal muscular atrophy: controversies and challenges. The Lancet Neurol. 2012;11(5):443-52.
Yeo CJ, Darras BT. Overturning the paradigm of spinal muscular atrophy as just a motor neuron disease. Pediat Neurol. 2020;109:12-9.
De Sanctis R, Coratti G, Pasternak A, Montes J, Pane M, Mazzone ES, et al. Developmental milestones in type I spinal muscular atrophy. Neuromuscular Disorders. 2016;26(11):754-9.
Finkel RS, McDermott MP, Kaufmann P, Darras BT, Chung WK, Sproule DM, et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology. 2014;83(9):810-7.
Kolb SJ, Coffey CS, Yankey JW, Krosschell K, Arnold WD, Rutkove SB, et al. Natural history of infantile‐onset spinal muscular atrophy. Ann Neurol. 2017;82(6):883-91.
Ratni H, Ebeling M, Baird J, Bendels S, Bylund J, Chen KS, et al. Discovery of risdiplam, a selective survival of motor neuron-2 (SMN2) gene splicing modifier for the treatment of spinal muscular atrophy (SMA). 2018;61(15):6501-17.
Czech C, Tang W, Bugawan T, Mano C, Horn C, Iglesias VA, et al. Biomarker for spinal muscular atrophy: expression of smn in peripheral blood of sma patients and healthy controls. PLoS One. 2015;10(10):139950.
Keinath MC, Prior DE, Prior TW. Spinal muscular atrophy: mutations, testing, and clinical relevance. Appl Clin Genet. 2021;14:11-25.
Harada Y, Rao VK, Arya K, Kuntz NL, DiDonato CJ, Napchan-Pomerantz G, et al. Combination molecular therapies for type 1 spinal muscular atrophy. Muscle Nerve. 2020;62(4):550-4.
Markati T, Fisher G, Ramdas S, Servais L. Risdiplam: an investigational survival motor neuron 2 (SMN2) splicing modifier for spinal muscular atrophy (SMA). Expert Opinion on Investigational Drugs. 2022;31(5):451-61.
Qiu J, Wu L, Qu R, Jiang T, Bai J, Sheng L, et al. History of development of the life-saving drug “Nusinersen” in spinal muscular atrophy. Front Cell Neurosci. 2022;16:942976.
Ogbonmide T, Rathore R, Rangrej SB, Hutchinson S, Lewis M, Ojilere S, et al. Gene therapy for spinal muscular atrophy (SMA): A review of current challenges and safety considerations for onasemnogene abeparvovec (Zolgensma). Cureus. 2023;15:3.
Soini V, Schreiber G, Wilken B, Hell AK. Early development of spinal deformities in children severely affected with spinal muscular atrophy after gene therapy with onasemnogene abeparvovec-preliminary results. Children. 2023;10(6):998.
López-Cortés A, Echeverría-Garcés G, Ramos-Medina MJ. Molecular pathogenesis and new therapeutic dimensions for spinal muscular atrophy. Biology. 2022;11(6):894.
Li JY, Dai Y, Sun XH, Ren HT, Shen DC, Yang XZ, et al. Comparison of neurofilament light and heavy chain in spinal muscular atrophy and amyotrophic lateral sclerosis: A pilot study. Brain and behavior. 2023;13(5):2997.
Newson AJ, Dive L, Cini J, Hurley E, Farrar MA. Ethical aspects of the changing landscape for spinal muscular atrophy management in Australia. Aus J Gen Prac. 2022;51(3):131-5.
Favia M. Onasemnogene Abeparvovec: Post-infusion Efficacy and Safety in Patients with Spinal Muscular Atrophy (SMA). A Fondazione Policlinico Gemelli IRCCS Experience, Hospital Pharmacy. 2022;12:4.
Santos LS. Spinal muscular atrophy: health related quality of life and burden to parents, Health Sciences Journal. 2022;12:4.
Kichula EA, Proud CM, Farrar MA, Kwon JM, Saito K, Desguerre I, et al. Expert recommendations and clinical considerations in the use of onasemnogene abeparvovec gene therapy for spinal muscular atrophy. Muscle Nerve. 2021;64(4):413-42.
Zettler B, Estrella E, Liaquat K, Lichten L. Evolving approaches to prenatal genetic counselling for Spinal Muscular Atrophy in the new treatment era. J Genet Couns. 2022;31(3):803-14.
Mercuri E. Defining meaningful outcomes for patients with spinal muscular atrophy in the era of gene therapy. EMJ Neurol. 2023;11(1):72-81.
Singh RN, Howell MD, Ottesen EW, Singh NN. Diverse role of survival motor neuron protein. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2017;1860(3):299-315.
Finkel RS et al. (2017) Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med 2017;377:1723-32.
Chiriboga CA. Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology. 2016;86(10): 890-7.
Mercuri E et al. (2018) Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med 2018;378:625-35.
Mendell JR. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377(18):1713-22.
Sivaramakrishnan M. Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nature Communications. 2017;8:1476.
Poirier A. Risdiplam distributes and increases SMN protein in both the central nervous system and peripheral organs. Pharm Res Pers. 2018;6(6):447.
Calucho M, Bernal S, Alías L, March F, Venceslá A, Rodríguez-Álvarez FJ, et al. Correlation between SMA type and SMN2 copy number revisited: An analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul Disord. 2018;28(3):208-15.
Edward PA, Daniel CM, Yeh WS, Dahl GJ, Rees L, Sicignano N. The economic burden of spinal muscular atrophy. J Med Econ. 2016;19:8;822-6.
Werdnig G. Two early infantile hereditary cases of progressive muscular atrophy simulating dystrophy, but on a neural basis. 1891. Arch Neurol. 1971;25(3):276-8.
Hoffmann J. Ueber chronische spinale muskelatrophie im kindesalter, auf familiar basis. Dtsch Z Für Nervenheilkd. 1893;3:427-70.
Brzustowicz LM, Niba ETE, Saito T. Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome. Int J Mol Sci. 2023;24(15):11939.
Melki J, Abdelhak S, Sheth P, Bachelot MF, Burlet P, Marcadet A, et al. Gene for chronic proximal spinal muscular atrophies maps to chromosome 5q. Nature. 1990;344(6268):767-8.
Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80(1):155-65.
Ogino S, Leonard DG, Rennert H, Ewens WJ, Wilson RB. Genetic risk assessment in carrier testing for spinal muscular atrophy. Am J Med Genet. 2002;110(4):301-7.
Lunn MR et al.Spinal muscular atrophy. Lancet Lond Engl. 2008:60921-6.
Munsat TL. International SMA collaboration. Neuromuscul Disord. 1991;9:52.
Boemer F. Newborn screening for SMA in Southern Belgium, Neuromuscul Disord. 2019;02:3.