Antimicrobial resistance and its possible implications in the future: a mini review

Authors

  • Matrujyoti Pattnaik Department of Microbiology and Public Health, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, Odisha, India https://orcid.org/0000-0001-8614-2920
  • Swati Pattnaik Department of Health and Family Welfare, Koraput, Odisha, India
  • Jyotirmayee Pradhan Department of Zoology, Kuntala Kumari Sabat Women’s College, Motiganj, Balasore, Odisha, India
  • Debdutta Bhattacharya Department of Microbiology and Public Health, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, Odisha, India

DOI:

https://doi.org/10.18203/2394-6040.ijcmph20233499

Keywords:

AMR, MDR, Microbes, Infectious disease, Future

Abstract

The emergence of antimicrobial resistance (AMR) among different species of microbes, or infectious agents, has become a major public health concern worldwide. This alarming trend is due to the rapid development of new resistance mechanisms and the decreasing effectiveness of treating common infectious diseases. As a result, standard treatments often fail to elicit a proper microbial response, leading to prolonged illness, increased healthcare costs, and a higher risk of mortality. Many infectious agents, including bacteria, fungi, viruses, and parasites, have developed high levels of multidrug resistance, resulting in increased morbidity and mortality rates, and being called as "superbugs." While the development of MDR is a natural process, it is exacerbated by the inappropriate use of antimicrobial drugs, inadequate sanitary conditions, improper food handling, and subpar infection prevention and control practices. Given the importance of AMR, this paper enlists the AMR issue along with its significance, mechanism and its possible impact in the future. The creation of innovative treatments to fight these persistent infections should be made easier by a better strategy of educating the population about the drivers of AMR.

References

Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol. 2010;1:134.

Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74(3):417-33.

Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol. 2018;9(1):2928.

World Health Organization. Antimicrobial Resistance Global Report on Surveillance, World Health Organization, Geneva, Switzerland. 2014. Available at: https://apps.who.int/iris/bitstream/handle/10665/ 112642/9789241564748_eng.pdf?sequence=1&isAllowed=y. Accessed on 27 April, 2023.

Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of Antifungal Drug Resistance. Cold Spring Harb Perspect Med. 2014;5(7):a019752.

Fisher MC, Alastruey-Izquierdo A, Berman J, Bicanic T, Bignell EM, Bowyer P, et al. Tackling the emerging threat of antifungal resistance to human health. Nat Rev Microbiol. 2022;20(9):557-71.

Strasfeld L, Chou S. Antiviral drug resistance: mechanisms and clinical implications. Infect Dis Clin North Am. 2010;24(2):413-37.

Günthard HF, Calvez V, Paredes R, Pillay D, Shafer RW, Wensing AM, et al. Human Immunodeficiency Virus Drug Resistance: 2018 Recommendations of the International Antiviral Society-USA Panel. Clin Infect Dis. 2019;68(2):177-87.

Margeridon-Thermet S, Shafer RW. Comparison of the Mechanisms of Drug Resistance among HIV, Hepatitis B, and Hepatitis C. Viruses. 2010;2(12):2696-739.

Wang S, Xu S, Geng J, Si Y, Zhao H, Li X, et al. Molecular Surveillance and in vitro Drug Sensitivity Study of Plasmodium falciparum Isolates from the China-Myanmar Border. Am J Trop Med Hyg. 2020;103(3):1100-06.

Bansal D, Sehgal R, Chawla Y, Malla N, Mahajan RC. Multidrug resistance in amoebiasis patients. Indian J Med Res 2006;124(2):189-94.

Greenberg RM, Doenhoff MJ. Chemotherapy and Drug Resistance in Schistosomiasis and Other Trematode and Cestode Infections. In: Mayers D, Sobel J, Ouellette M, Kaye K, Marchaim D. (eds) Antimicrobial Drug Resistance. Springer, Cham. 2017.

Shin SS, Keshavjee S, Gelmanova IY. Development of extensively drug-resistant tuberculosis during multidrug-resistant tuberculosis treatment. Am J Respir Crit Care Med. 2010;182:426-32.

Sawatwong P, Sapchookul P, Whistler T, Gregory CJ, Sangwichian O, Makprasert S. High Burden of Extended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Bacteremia in Older Adults: A Seven-Year Study in Two Rural Thai Provinces. Am J Trop Med Hyg. 2019;100(4):943-51.

Zhao W, Li X, Yang Q, Zhou L, Duan M, Pan M, et al. In vitro susceptibility profile of Plasmodium falciparum clinical isolates from Ghana to antimalarial drugs and polymorphisms in resistance markers. Front Cell Infect Microbiol. 2022;12:1015957.

Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109(7):309-18.

Mazu TK, Bricker BA, Flores-Rozas H, Ablordeppey SY. The Mechanistic Targets of Antifungal Agents: An Overview. Mini Rev Med Chem. 2016;16(7):555-78.

Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens. 2021;10(10):1310.

Xu C, Bilya SR, Xu W. adeABC efflux gene in Acinetobacter baumannii. New Microbes New Infect. 2019;30:100549.

Martin SI, Kaye KM. Beta-lactam antibiotics: newer formulations and newer agents. Infect Dis Clin North Am. 2004;18(3):603-19.

Wieczorek K, Osek J. Antimicrobial resistance mechanisms among Campylobacter. Biomed Res Int. 2013:340605.

Ojdana D, Sacha P, Olszańska D, Majewski P, Wieczorek P, Jaworowska J, et al. First Report of Klebsiella pneumoniae-Carbapenemase-3-Producing Escherichia coli ST479 in Poland. Biomed Res Int. 2015:256028.

Poirel L, Madec JY, Lupo A, Schink AK, Kieffer N, Nordmann P, et al. Antimicrobial Resistance in Escherichia coli. Microbiol Spectr. 2018;6(4).

Hammoudi Halat D, Ayoub Moubareck C. The Current Burden of Carbapenemases: Review of Significant Properties and Dissemination among Gram-Negative Bacteria. Antibiotics (Basel). 2020;9(4):186.

Karaman R, Jubeh B, Breijyeh Z. Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches. Molecules. 2020;25(12):2888.

Passàli D, Lauriello M, Passàli GC, Passàli FM, Bellussi L. Group A streptococcus and its antibiotic resistance. Acta Otorhinolaryngol Ital. 2007;27(1):27-32.

Hayes K, O'Halloran F, Cotter L. A review of antibiotic resistance in Group B Streptococcus: the story so far. Crit Rev Microbiol. 2020;46(3):253-69.

Bae S, Lee J, Lee J, Kim E, Lee S, Yu J, et al. Antimicrobial resistance in Haemophilus influenzae respiratory tract isolates in Korea: results of a nationwide acute respiratory infections surveillance. Antimicrob Agents Chemother. 2010;54(1):65-71.

Mégraud F. The challenge of Helicobacter pylori resistance to antibiotics: the comeback of bismuth-based quadruple therapy. Therap Adv Gastroentero. 2012;5(2):103-9.

Rouquette-Loughlin C, Dunham SA, Kuhn M, Balthazar JT, Shafer WM. The NorM efflux pump of Neisseria gonorrhoeae and Neisseria meningitidis recognizes antimicrobial cationic compounds. J Bacteriol. 2003;185(3):1101-6.

Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177-92.

Sriyapai P, Pulsrikarn C, Chansiri K, Nyamniyom A, Sriyapai T. Molecular Characterization of Cephalosporin and Fluoroquinolone Resistant Salmonella choleraesuis Isolated from Patients with Systemic Salmonellosis in Thailand. Antibiotics (Basel). 2021;10(7):844.

Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Front Cell Infect Microbiol. 2020;10:107.

World Health Organization. WHO Publishes List of Bacteria for Which New Antibiotics are Urgently Needed; 2017. Available at: http://www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed/en/. Accessed on 9 May, 2023.

Lima SL, Colombo AL, de Almeida Junior JN. Fungal Cell Wall: Emerging Antifungals and Drug Resistance. Front Microbiol. 2019;10:2573.

Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42-51.

Sugi T, Kobayashi K, Takemae H, Gong H, Ishiwa A, Murakoshi F, et al. Identification of mutations in TgMAPK1 of Toxoplasma gondii conferring resistance to 1NM-PP1. Int J Parasitol Drugs Drug Resist. 2013;3:93-101.

World Bank. Drug-Resistant Infections: A Threat to Our Economic Future. World Bank: Washington, DC, USA. 2017;433-48.

Institute for Health Metrics and Evaluation (IHME). Financing Global Health 2019: Tracking Health Spending in a Time of Crisis. Seattle, WA: IHME. 2020.

Hamilton KW, Fishman NO. Antimicrobial stewardship interventions: thinking inside and outside the box. Infect Dis Clin North Am. 2014;28(2):301-13.

Moehring RW, Anderson DJ. Antimicrobial Stewardship as Part of the Infection Prevention Effort. Curr Infect Dis Rep. 2012;14:592-600.

Downloads

Published

2023-10-31

How to Cite

Pattnaik, M., Pattnaik, S., Pradhan, J., & Bhattacharya, D. (2023). Antimicrobial resistance and its possible implications in the future: a mini review. International Journal Of Community Medicine And Public Health, 10(11), 4485–4491. https://doi.org/10.18203/2394-6040.ijcmph20233499

Issue

Section

Review Articles