Original Research Article

Comparison of the frequency of preterm births in patients treated with oral versus intramuscular progesterone with history of previous preterm birth

Khadija Shahzad1*, Hafiza Ateeqa Mubarak Ali2, Urooj Anwar3, Ayesha Haroon4

1Gynaecology and Obstetrics, Patel Hospital, Karachi, Pakistan
2Obstetrics and Gynaecology, Ghurki Trust and Teaching Hospital, Lahore, Pakistan
3WMO Government Maternity Hospital, Gynaecology and Obstetrics Department, Karachi, Pakistan
4Obstetrics and Gynaecology, PNS Shifa Hospital, Lahore, Pakistan

Received: 01 June 2021
Revised: 09 July 2021
Accepted: 13 July 2021

*Correspondence:
Dr. Khadija Shahzad,
E-mail: khadija2020.shehzad@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Globally, it has proven that preterm birth is associated with perinatal mortality to the extent of >75%, and >50% of perinatal and long term morbidity. Oral progesterone are easy to take but are less effective because of first pass hepatic metabolism leading to variable plasma levels while intramuscular progesterone carries the risk of swelling and bruising at injection site. The aim was to find out frequency of preterm birth in patients treated with oral versus intramuscular progesterone.

Methods: Randomized controlled trial conducted in the department of obstetrics and gynecology, Sir Ganga Ram hospital Lahore, Pakistan conducted from 5 October 2017 to 4 April 2018. This study involved 530 pregnant women with history of at least 1 previous preterm delivery presenting in antenatal clinic between 16-20 weeks of gestation. Group I received oral progesterone 10 mg tablet duphaston BD from 20 weeks till 37 weeks. Group II received intramuscular progesterone injection proluton depot 250 mg IM weekly from 16-20 weeks till 37 weeks.

Results: The mean age of the patients was 27.52±4.57 years while the mean gestational age was 17.39±1.38 weeks. 47.5% of the patients were para 2 followed by para 3 (32.3%) and para 1 (20.2%). The mean gestational age at delivery was significantly higher among intramuscular group (36.14±2.23 versus 35.07±2.97 weeks; p=0.000). The frequency of preterm delivery was significantly lower in intramuscular group (24.9% versus 39.6%; p=0.000) as compared to oral group.

Conclusions: Frequency of preterm delivery was significantly lower in patients treated with intramuscular progesterone (24.9% versus 39.6%; p=0.000) as compared to oral progesterone.

Keywords: Preterm delivery, Oral progesterone, Intramuscular progesterone

INTRODUCTION

Preterm birth (PTB) has an incidence of 11% worldwide and one of the common complications of pregnancy. PTB is associated with perinatal mortality to the extent of >75% and >50% of perinatal and long-term morbidity.1-3 More than 15 million babies have PTB annually and over 1 million babies suffer life threatening complications of PTB.4

A recent systemic review has estimated that 9.6% of all the births were preterm, of which approximately 92.3%
were in Asia, Africa, Latin America and Caribbean.5
Pakistan contribution of perinatal death by prematurity is
15.8%.6

Most effective of PTB in prediction by risk rate and its
prevention. Different studies have been conducted to
establish the role of progesterone for prevention of PTB
and now American congress of obstetrics and
gynecologist (ACOG) and society for maternal-fetal
medicine (SMFM) also recommend use of progesterone
in prevention of PTB.7,8

Progesterone causes uterine quiescence by reducing the
gap junction formation. It decreases prostaglandin
production that leads to cervical stromal degradation
reduction and change ascending inflammation barrier of
cervix.9

The action of inhibiting the cervical ripening and
preventing PTB depends on progesterone proper route
and vehicle. Progesterone is available in natural as well as
synthetic forms for vaginal, oral and intramuscular uses.
Its preferable route is still a highly active area of research.

Oral progesterone are easy to take but are less effective
because of first pass hepatic metabolism leading o
variable plasma levels, it is usually non-compliant by the
patients due to its side effects like headache, nausea,
vomiting and sleepiness on oral intake.10 While
intramuscular progesterone, 17 α-hydroxyl progesterone
is a synthetic derivative of hydroxyl progesterone (natural
progesterone) and is exact duplicate of progesterone
produced in placenta and corpus luteum. So it is highly
absorbable and provided high and more sustained plasma
levels (half-life is 7.8 days) so used as 250
mg/weekly.11,12 In other trials its higher doses or shorter
intervals was used but non proved the efficacy.13-16 It is
also cost effective and low dose is required. Applying
pressure after the injection also minimizes the risk of
swelling and bruising. So both the routes have their own
pros and cons.

A study was done in India in which 23 of 46 women
treated with 17 α-hydroxyl progesterone (intramuscular)
delivered pre-term (50%) when compared to a control
group.17 Various studies also prove role of oral
progesterone in reducing the risk of PTB for example
PTB occurred in 29 out of 47 (39.2%) using oral
progesterone versus a controlled group 44 PTBs out of 74
(59.5%).18 In order to compare the effectiveness between
two routes of progesterone, Maher et al concluded that
daily vaginal progesterone administration is associated
with lower rates of PTBs as compared to intramuscular
weekly progesterone administration after a randomized
trial of 502 singleton pregnant women.19-22

A recent systematic view and meta-analysis showed that
women who received vaginal progesterone had
significantly lower rates of PTB and NICU admissions
compared with women who received 17 α-OHPC.

There are various studies available which prove role of
oral and intramuscular progesterone in the prevention of
PTB independently or in combination with control groups
but there is no comparative data available between these
two up till now. So this study will be first of its kind to
help to choose a better route. It will be a beneficial
intervention for our low resource community by
decreasing the PTB and its sequels.

METHODS

This was a randomized control trial, after approval from
hospital’s ethical review committee, 530 women fulfilling
the inclusion criteria (maternal age between 18-35 years,
gestational age between 16-20 weeks (according to
LMP), singleton pregnancy on ultrasound, previous
history of one or more preterm births, intact amniotic
membranes (no history of leaking) from 5 October 2017
to 4 April 2018 were taken into this study from OPD.
Informed consent from the patients was obtained for
taking part in the study and using their data in research.
Detailed history was obtained. Confounding variables
were controlled by strict exclusion criteria (PROM,
chorioamnionitis on history (leaking, fever), clinical
examination and labs IUGR, anomalous fetus on
ultrasound, oligohydramnios on ultrasound and clinically,
medical complication (gestational diabetes, pregnancy
induced hypertension BP >140/90 mmHg), urinary tract
infection on history of burning micoturition, dysuria,
frequency and urgency of urine. The lottery method was
used to segregate the patients into two groups. Group I
received oral progesterone 10 mg tablet duphaston
(dydrogesterone) BD from 20 weeks till 37 weeks. Group
II received intramuscular progesterone injection proluton
depot (17-α hydroxyl progesterone) 250 mg IM weekly
from 16-20 weeks till 37 weeks. Drug compliant charts in
form of pill taking form were given to group I
participants to regulate timely intake of drug. Compliance
was checked by calculating total number of tablet taken.
Group II patients compliance was maintained by entering
the date and time of injection on their antenatal cards.
Patients follow up was done on outdoor basis weekly to
regulate their routine antenatal checkup. All the patients
entering active preterm labor were identified and were
managed according to standard protocol. Frequency of
preterm birth was recorded. All the information was
recorded using a specially designed proforma and under
supervision of an expert obstetrician fellow of CPSP.
The SPSS version 21 was used to analyse the data. Numerical
variables like age and gestational age at the time of
delivery have been presented by mean±SD. Frequency
has been calculated for parity. Data has been stratified for
age, parity, no. of previous preterm births and BMI to
address effect modifiers. Post-stratification Chi-square
test has been applied taking p value ≤0.05 as statistically
significant.
RESULTS

The age of the patients ranged from 18 years to 35 years with a mean of 27.52±4.57 years. The gestational age of the patients ranged from 16 weeks to 20 weeks with a mean of 17.39±1.38 weeks. 47.5% of the patients were para 2 followed by para 3 (32.3%) and para 1 (20.2%). The BMI of the patients ranged from 21.73 kg/m² to 34.60 kg/m² with a mean of 28.10±3.44 kg/m². The number of previous preterm births ranged from 1 to 2 with a mean of 1.20±.40. 80% of patients had 1 previous preterm delivery while 20% patients had 2 previous preterm deliveries. These findings have been summarized in Table 1.

These patients were randomly allocated into two treatment groups. When compared both the groups were comparable in terms of mean age (p=0.556), mean gestational age (p=0.777), mean BMI (p=0.795), parity (p=0.985) and previous preterm deliveries distribution (p=0.128). However, the mean gestational age at delivery was significantly higher among intramuscular group (36.14±2.23 versus 35.07±2.97 weeks; p=0.000) as compared to oral group as shown in Table 2.

The frequency of preterm delivery was significantly lower in intramuscular group (24.9% versus 39.6%; p=0.000) as compared to oral group. This difference was seen across all age, parity, number of previous preterm deliveries and BMI groups. These findings have been summarized in Table 3.

Table 1: Baseline characteristics of study population.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>n=530</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (in years)</td>
<td>27.52±4.57</td>
</tr>
<tr>
<td>Gestational age (in weeks)</td>
<td>17.39±1.38</td>
</tr>
<tr>
<td>Parity</td>
<td></td>
</tr>
<tr>
<td>Primiparous (%)</td>
<td>107 (20.2)</td>
</tr>
<tr>
<td>Para 2 (%)</td>
<td>252 (47.5)</td>
</tr>
<tr>
<td>Para 3 (%)</td>
<td>171 (32.3)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>28.10±3.44</td>
</tr>
<tr>
<td>Previous preterm births</td>
<td>1.20±.40</td>
</tr>
<tr>
<td>1 (%)</td>
<td>424 (80.0)</td>
</tr>
<tr>
<td>2 (%)</td>
<td>106 (20.0)</td>
</tr>
<tr>
<td>Gestational age at delivery (in weeks)</td>
<td>35.61±2.68</td>
</tr>
</tbody>
</table>

Table 2: Baseline characteristics of study groups.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Oral progesterone</th>
<th>Intramuscular progesterone</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>n=265</td>
<td>n=265</td>
</tr>
<tr>
<td>Age (in years)</td>
<td>27.40±4.56</td>
<td>27.64±4.59</td>
</tr>
<tr>
<td>Gestational age (in weeks)</td>
<td>17.37±1.37</td>
<td>17.40±1.39</td>
</tr>
<tr>
<td>Parity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primiparous (%)</td>
<td>54 (20.3)</td>
<td>53 (20.0)</td>
</tr>
<tr>
<td>Para 2 (%)</td>
<td>125 (47.2)</td>
<td>127 (47.9)</td>
</tr>
<tr>
<td>Para 3 (%)</td>
<td>86 (32.5)</td>
<td>85 (32.1)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>28.14±3.57</td>
<td>28.06±3.32</td>
</tr>
<tr>
<td>Previous preterm births</td>
<td>1.17±.38</td>
<td>1.23±.42</td>
</tr>
<tr>
<td>1 (%)</td>
<td>219 (82.6)</td>
<td>205 (77.4)</td>
</tr>
<tr>
<td>2 (%)</td>
<td>46 (17.4)</td>
<td>60 (22.6)</td>
</tr>
<tr>
<td>Gestational age at delivery (in weeks)</td>
<td>35.07±2.97</td>
<td>36.14±2.23</td>
</tr>
</tbody>
</table>

Table 3: Comparison of frequency of preterm delivery between study groups.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Oral progesterone (%)</th>
<th>Intramuscular progesterone (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>n=265</td>
<td>n=265</td>
<td></td>
</tr>
<tr>
<td>Preterm delivery</td>
<td>105 (39.6)</td>
<td>66 (24.9)</td>
<td>0.000*</td>
</tr>
<tr>
<td>Age groups (in years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-23</td>
<td>30/72 (41.7)</td>
<td>13/54 (24.1)</td>
<td>0.039*</td>
</tr>
<tr>
<td>24-29</td>
<td>41/104 (39.4)</td>
<td>34/130 (26.2)</td>
<td>0.031*</td>
</tr>
<tr>
<td>30-35</td>
<td>34/89 (38.2)</td>
<td>19/81 (23.5)</td>
<td>0.038*</td>
</tr>
</tbody>
</table>

Continued.
DISCUSSION

Preterm birth is associated with perinatal mortality to the extent of >75% and >50% of perinatal and long-term morbidity. More than 15 million babies have preterm birth annually and over 1 million babies suffer life threatening complications of preterm birth.

A recent systemic review has estimated that 9.6% of all the births were preterm, of which approximately 92.3% were in Asia, Africa, Latin America and Caribbean. Pakistan contribution of perinatal death by prematurity is 15.8%.

Different studies have been conducted to establish the role of progesterone for prevention of preterm birth. Oral progesterone are easy to take but are less effective because of first pass hepatic metabolism leading to variable plasma levels while intramuscular progesterone carries the risk of swelling and bruising at injection site. There are various studies available which prove role of oral and intramuscular progesterone in the prevention of preterm birth independently or in combination with control groups but there was no comparative data available.

Our study involved 530 pregnant women with history of at least 1 previous preterm delivery presenting in antenatal clinic between 16-20 weeks of gestation. These Patients were divided into two groups using lottery method. Group I received oral progesterone 10 mg tablet duphaston (dydrogesterone) BD from 20 weeks till 37 weeks. Group II received intramuscular progesterone injection prolon depot (17-α hydroxyl progesterone) 250 mg IM weekly from 16-20 weeks till 37 weeks. A written informed consent was obtained from every patient. The mean age of the patients was 27.5±4.57 years. A similar mean age in patients with previous preterm delivery has been reported previously by Glover et al in 2011 (27.2±4.9 years) Hameed et al in 2012 (27.4±6.55 years) and Berghella et al in 2010 (26.3±4.5 years) among American, Egyptian and British populations respectively.

Choudhary et al in 2014 (24.11±2.386 years), Rai et al in 2009 (26.07±3.24 years) reported similar mean age among Indian such patients. Grobman et al reported much lower mean age of 22.8±5.3 years in American population in 2012. The mean gestational age was 17.39±1.38 weeks in the present study. Our results match with those of Glover et al who observed a mean gestational age of 17.0±2.4 weeks previously in 2011. A relatively higher mean gestational age was observed by Berghella et al in 2010 (19.6±2.0 weeks) and Rai et al in 2009 (20.69±2.83 weeks). The mean BMI of the patients was 28.10±3.44 Kg/m². A similar mean BMI of 26.1±6.9 kg/m² and 27.3±7.5 kg/m² was previously observed by Grobman et al in 2012 and Glover et al in 2011 respectively among American such patients. The number of previous preterm births ranged from 1 to 2 with a mean of 1.20±0.40. Rai et al in 2009 observed a similar mean number of previous preterm deliveries (1.21±0.53) among Indian population. Grobman et al however observed quite higher mean number of previous preterm deliveries and reported it to be 1.5±0.9.

When compared both the groups were comparable in terms of mean age (p=0.556), mean gestational age (p=0.777), mean BMI (p=0.795), parity (p=0.985) and previous preterm deliveries distribution (p=0.128). Thus there was no inherent bias in the study groups.

The mean gestational age at delivery was significantly higher among intramuscular group (36.1±4.23 versus 35.07±2.97 weeks; p=0.000). A similar significant difference was reported by Hameed et al in intramuscular progesterone (36.3±2.4 versus 34.2±2.6 weeks; p=0.002) versus placebo. Choudhary et al in 2014 also observed similar difference in oral progesterone (36.79±2.64 versus 35.90±2.00 weeks; p=0.076) versus placebo but the difference was statistically insignificant. Grobman et al in 2012 observed similar insignificant difference in intramuscular progesterone (37.6±3.9 versus 37.4±4.3 weeks; p=0.93) versus placebo.

Chi-square tests; *observed difference was statistically significant.
The frequency of preterm delivery was significantly lower in intramuscular group (24.9% versus 39.6%; p=0.000) as compared to oral group. This difference was seen across all age, parity, number of previous preterm deliveries and BMI groups. Our results match with those of Grobman et al in 2012 (25.1%) and Hameed et al in 2012 (21.4%) who reported similar frequency of preterm delivery with intramuscular progesterone.24,27 While a similar frequency of 39.2% has been reported by Rai et al in 2009 with oral progesterone.18 Thus the frequency of preterm delivery was significantly lower in patients treated with intramuscular progesterone (24.9% versus 39.6%; p=0.000) as compared to oral progesterone irrespective of patients age, parity, BMI and number of previous preterm deliveries.

The present study is first of its kind and compares oral versus intramuscular progesterone for the first time in the treatment of preterm delivery. The results of the present study confirm that intramuscular progesterone was superior to oral form and should be prescribed in future practice. It was exact duplicate of progesterone produced in placenta and corpus luteum and was highly absorbable. Therefore it provides high and more sustained plasma levels (half-life is 7.8 days).28 It was also cost effective and low dose was required. Applying pressure after the injection can reduce the risk of swelling and bruising and can thus make it more acceptable to the patient.

Limitations

The limitations of the study were that it was a single institution study and the sample size was small.

CONCLUSION

The results of the present study confirm that intramuscular progesterone is superior to oral form and should be prescribed in future practice. It is exact duplicate of progesterone produced in placenta and corpus luteum and is highly absorbable. Therefore it provides high and more sustained plasma levels (half-life is 7.8 days). It is also cost effective and low dose is required. Applying pressure after the injection can reduce the risk of swelling and bruising and can thus make it more acceptable to the patient.

Frequency of preterm delivery was significantly lower in patients treated with intramuscular progesterone (24.9% versus 39.6%; p=0.000) as compared to oral progesterone irrespective of patients age, parity, BMI and number of previous preterm deliveries.

Recommendations

It is recommended that intramuscular progesterone can be safely use for prevention of preterm birth in means if effectiveness, cost and side effects as compared to oral progesterone.

Funding: No funding sources
Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

International Journal of Community Medicine and Public Health | August 2021 | Vol 8 | Issue 8 | Page 3834

