Systematic Review

A literature study of anemia among malaria cases reported in Indonesia, from west to east: a parasitoid-epidemiology perspective

Forman E. Siagian*

Department of Parasitology and The Centre of Biomedic Research, Faculty of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia

Received: 06 August 2020
Revised: 26 August 2020
Accepted: 28 August 2020

*Correspondence:
Dr. Forman E. Siagian,
E-mail: forman.siagian@uki.ac.id

ABSTRACT

Severe malarial anemia (SMA) is a potentially fatal complication of malaria, a neglected parasitic tropical disease that still become a global health problem. It occurs predominantly in vulnerable groups in the community, especially children and pregnant women living in endemic areas, including Indonesia. The data on prevalence of SMA and its contributing factors are sparse and incomplete, so the aim of this simple literature study is to provide that data. The author doing the electronic literature searching on Indonesia’s data concerning malaria related anemia and factors that might contribute or causing this complication. There are 37 studies found on this issue, from 2001 until 2019. All 37 studies reported that anemia that developed during the course of the disease (malaria) varies from asymptomatic to severe form. This study showed the condition of anemia related malaria in Indonesia, from 2001-2019. Malaria still a big parasitoid-epidemiology problem. Prevention by continuous health promotion and proper management of malaria should be conducted to eradicate malaria and its complication.

Keywords: Blood protozoan, Plasmodium spp, Transfusion, Comorbidities, Children, Pregnant women

INTRODUCTION

Malaria is a life-threatening disease caused by parasites that are transmitted to people through the bites of infected female Anopheles mosquitoes. There are 5 species malaria in human: Plasmodium vivax, P. falciparum, P. malariae, P. ovale and P. knowlesi. Geographic distribution of this disease is unique, especially region close to the equator. Even though potentially lethal, actually, it is preventable and curable.1-3

During 2018, a rough estimation counts 228 million cases of malaria worldwide. The estimated number of malaria related morbidity as many as 405 000 in 2018. Children, especially aged under 5 years are the most vulnerable group affected by malaria.1,2 Global malaria cases already reduced slowly, even though the rate of decline is not as fast as expected.1 Morbidity and mortality due to malaria in endemic countries, including some part of Indonesia, still found.2 Children and pregnant women are among the most vulnerable group.3,4

The majority of malarial infections to some extent are associated with various degree of anemia.3 Its severity relies upon two conditions patient-related properties (e.g., gender, age, innate and acquired resistance for people living in endemic areas, comorbid) and also parasite-specific characteristics (eg, species of malaria infected, adhesiveness to the smaller vessels, and drug-resistance phenotype).5,7 Anemia related malaria is capable of causing collateral, mild to even severe, morbidity and mortality, especially in vulnerable groups, e.g. children and pregnant women.5,10 The most severe form of anemia in malaria named severe malarial anemia (SMA).5,8 Comorbidities, e.g helminthiasis, malnutrition, HIV.
tuberculosis etc made the problem become more complex to solve.11,12

In Indonesia, due to its wide geographical coverage and the lack of documentation or publication, the study of malaria related anemia has somewhat typically under-reported, belatedly, rarely and not thoroughly; even though that the result still give an excellent information needed not just by the academics and the clinicians, but to even to tourism practitioner, because some of Indonesia’s best tourism destination located in region considered to be malaria endemic.13-15 Publication on this topics could improve awareness and precaution.16 The primary aim of this literature study is to review the incidence of anemia among Indonesia’s malaria patients published in the internet, their geographic location and its related factors stated in the published studies that might consider contributing to the occurrence of anemia.

\textbf{METHODS}

The author did the literature searching on the internet using popular search engine Google\textsuperset{TM}, Yahoo\textsuperset{TM} and Google Scholar\textsuperset{TM}. The phrase used were “Malaria Anemia Indonesia pdf”, “Anemia pada Malaria di Indonesia pdf”, “Kasus Anemia pada Malaria di Indonesia pdf”, “Malarial Anemia in Indonesia pdf” and “Anemia among Malaria case in Indonesia pdf”. combination the search term in Bahasa Indonesia/Indonesian language and in English were conducted.

This literature searching conducted from July 27th to August 2nd 2020. Potential article was sorted based on the type of the article which must be research article or original article, the title and content of the abstract and then saved for further analysis. Thorough and careful reading was done in order to make sure that the potential article actually revealed the incidence of anemia on their report. Factors that might contribute to the occurrence of anemia were also screened. A brief note when considered necessary was made on these findings and will be presented in the form of a summary table.

\textbf{RESULTS}

From hundreds of article collected, potential articles shorten into dozens and the final number of article which is assessed by the author personally are 37 articles. Out of these 37 studies, some conducted by bachelor degree students as their final thesis, and some were conducted by health professional that taking care the malaria (+) patient and some conducted by researcher from ministries of Health. Some studies, especially those conducted in Papua were collaboration study with foreign researcher.

All 37 studies about anemia related malaria showed us that the spectrum of anemia as a consequences of malaria took place since the very early phase of infection, eventhough the clinical manifestation may occur gradually. From all these studies (n=37) most of the study design were cross sectional (36/97.29%). A study conducted by Taylor et al have a cohort/prospective study design. The number of the respondents also varies from just dozens (e.g. Masengi et al) to hundred of thousands, and in all studies entangle both gender.

Out of these 37 studies, the data on 13 studies (35.13\%) come from the subject infant, baby, toddler, children or <18 years old individuals. There are 5 studies (13.51\%) with the subject were pregnant women and even one of these studies observed the outcome to that pregnancies. Even though most of these studies conducted on more diverse population. Table 1 list the summary of the findings in 37 studies conducted in some endemic areas in Indonesia concerning malarial related anemia.

The number of studies conducted on hospitalized or outpatient from Primary health care facility or hospital are 25 (67.56\%), while community or population-based studies as many as 12 (32.44\%). Time of study ranging from 2001 conducted by Yusroh et al in Mandailing Natal, North Sumatera (western part of Indonesia) and the most recent study conducted by Patriani et al in Southern Papua (eastern part of Indonesia), last year (2019).

From those 37 articles, in brief can be classified due to the geographic distribution based on major big island of Indonesia, namely Sumatra, Jawa/Java, Kalimantan/Borneo, Sulawesi, Ambon, Nusa Tenggara and Papua. Article no. 1-5 published data from Sumatra, article no. 6 from Java, article no. 7-8 from Kalimantan/Borneo, article no. 8-17 from Sulawesi, article 18-19 from Ambon, article no. 20-27 from Nusa Tenggara, article no. 28-37 conducted in Papua. From all 5 big island, Papua contributes the highest in number of studies (10/37=27.02\%).

Figure 1: Recent map of malaria endemicity in Indonesia, 2018. We modified the map by adding arrow and number. Area pointed with arrow which studies conducted according to their sequence number listed in Tables 1, range from the year 2001-2019. (A-G) Are the big island in Indonesia, namely (A) Sumatra, (B) Jawa/Java, (C) Kalimantan/Borneo, (D) Sulawesi/Celebes, (E) Ambon islands, (F) Nusa Tenggara and (G) Papua, with modification.13
Table 1: Summary of the findings in 37 studies conducted in some endemic areas in Indonesia concerning malarial related anemia.

<table>
<thead>
<tr>
<th>S. no.</th>
<th>Location</th>
<th>Author (year of publication)</th>
<th>Design of study, additional info on subject/location</th>
<th>Total no. investigated</th>
<th>Findings</th>
</tr>
</thead>
</table>
| 1 | Mandailing Natal, North Sumatera, Sumatera | Yusroh et al17 (2001) | Cross sectional and primary health care based | 67 children malaria (+), aged <15 years old | *P. vivax* 49/67 = 73.13% mean Hb 10.41 g/dL
P. falciparum 18/67 = 26.86% mean Hb 10.46 g/dL
Malaria based on gender
- Vivax Male 8/18= 44.44%, Female 10/18= 63.56%
- Falciparum Male 29/49= 59.18%, Female 40.81%
All showed morphology of anemia haemolytic |
| 2 | Padang, West Sumatera, Sumatera | Rahma18 (2018) | Cross sectional and hospital based | 76 patient’s malaria (+) | *P. vivax* 73/76 = 96.05%, *P. falciparum* 3.95%
Gender: male 46 (60.53%), female 30 (39.47%)
- Anemia 21/76 = 27.63%
- Mild 12/21 = 57.14%
- Moderate 8/21 = 38.09%
- Severe 1/21 = 4.76%
Anemia more prominent on female non pregnant patient |
| 3 | West Bangka, Sumatera | Supriadi19 (2018) | Cross sectional and primary health care based | 326 patient’s malaria positive | Anemia 165/326 = 50.61%
Gender of Malaria (+) with anemia (+) patient
- Male 141/165 = 85.45%
- Female 24/165 = 14.55%
Anemia more prominent on male patient
Anemia based on type of malaria
- *P. vivax* 16/165 = 9.69%
- *P. falciparum* 113/165 = 68.48%
- Mixed infection 36/165 = 21.81% |
| 4 | Bengkulu, Sumatera | Flora20 (2013) | Cross sectional and primary health care based | 55 pregnant women with history of malaria | Microscopic findings 3/55 = 5.45% malaria (+)
All malaria (+) also suffer from anemia (+)
Malaria (+) pregnant women
- All suffer from anemia
- All had low TIBC
- All had Fe serum level from low to normal |
| 5 | Pesawaran, Central Lampung, Sumatera | Triwahyuni21 (2014) | Cross sectional primary health care based | 40 patients of malaria (+) | Mean Hb among malaria (+) with anemia (+)
- Mild anemia 11.66 g/dl
- Moderate 8.72 g/dl
- Severe 5.25 g/dl
Negative correlation between parasitemia and anemia |

Continued.
<table>
<thead>
<tr>
<th>S. no.</th>
<th>Location</th>
<th>Author (year of publication)</th>
<th>Design of study, additional info on subject/location</th>
<th>Total no. investigated</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Pacitan, East Java</td>
<td>Mardianah et al (2006)</td>
<td>Cross sectional elementary school based</td>
<td>62 children with clinical history of malaria</td>
<td>19/62=30.64% anemia (+) 29/62=46.77% experienced recent clinical malaria</td>
</tr>
<tr>
<td>7</td>
<td>Kab Tanah Bumbu, Kalimantan (Borneo)</td>
<td>Marlinae et al (2014)</td>
<td>Cross sectional and population based</td>
<td>30 pregnant women</td>
<td>Mild anemia 8/22=26.7% among pregnant women who used insecticide-treated bed nets that lived in 2 endemic areas of malaria</td>
</tr>
<tr>
<td>8</td>
<td>Kalimantan (Borneo) and Sulawesi</td>
<td>Avrina et al (2011)</td>
<td>Cross sectional, primary health-care patient based</td>
<td>206 patients • Vivax (+) 87 • Falciparum (+) 119 • Mixed (+) 23</td>
<td>Mean Hb for P. vivax and P. falciparum 10g/dL Fever in malaria vivax 31/87=35.63%, malaria falciparum 63/119=52.94% Anemia (Hb<11g/dL) malaria vivax 66.3%, malaria falciparum 37.1%</td>
</tr>
<tr>
<td>9</td>
<td>North Minahasa, Sulawesi</td>
<td>Mongi et al (2014)</td>
<td>Cross sectional, primary health-care patient based</td>
<td>50 patients with clinical symptom of malaria</td>
<td>5/50=10% malaria (+) microscopically All malaria (+) suffer from anemia Statistically, positive correlation of malaria with anemia</td>
</tr>
<tr>
<td>10</td>
<td>Banggai, Central Sulawesi</td>
<td>Arsin et al (2009)</td>
<td>Cross sectional, primary health-care patient based</td>
<td>150 patients with clinical diagnosis of suspect Malaria</td>
<td>78/150=52% malaria (+) microscopically Sensitivity of Anemia 76.9% and specificity of Anemia 59.7%, accuracy rate 68.7% Statistically, Anemia is the most correlated clinical sign of malaria with the result of microscopic examination In attempt to diagnosis malaria clinically, shivering and clinical anemia are the best predictor</td>
</tr>
<tr>
<td>11</td>
<td>Luwuk, Banggai, Central Sulawesi</td>
<td>Bantoyot et al (2011-2013)</td>
<td>Cross sectional, hospital-patient based</td>
<td>75 malaria (+) children <15 years old</td>
<td>Male 40/75=53.3%, Female 35/75=46.7% Aged 1-4 years old 26/75=34.7% Anemia 43/75=57.3% Type of malaria • Vivax 49/75=65.3% • Falciparum 13/75=17.3% • Clinical malaria 13/75=17.3%</td>
</tr>
<tr>
<td>12</td>
<td>Bolaang Mongondow, North Sulawesi</td>
<td>Lasari et al (2013)</td>
<td>Cross sectional elementary school based</td>
<td>110 students</td>
<td>9/110=8.18% Malaria (+) microscopically 7/9=77.77% malaria (+) were also anemia (+)</td>
</tr>
<tr>
<td>13</td>
<td>East Sumalata, Gorontalo, Sulawesi</td>
<td>Amalia (2017)</td>
<td>Cross sectional elementary school based</td>
<td>105, children age 7-12 years old</td>
<td>79/105=75.2% malaria (+) microscopically, male 49 (62%), female 30 (38%); age 7-9: 17 (21.5%) and age 10-12: 62 (78.5%) 59/79=74.7% malaria (+) were suffer from anemia (mean Hb 10.6 g/dL)</td>
</tr>
<tr>
<td>14</td>
<td>Kab. Mamuju, West Sulawesi</td>
<td>Ansar et al (2014)</td>
<td>Cross sectional, combination of both survey and Hb examination</td>
<td>314, teenage girl</td>
<td>60/314=19.1% had history of Malaria 94/314=29.9% anemia 27/60=45.1% who had history of malaria suffer from anemia</td>
</tr>
</tbody>
</table>

Continued.
<table>
<thead>
<tr>
<th>S. no.</th>
<th>Location</th>
<th>Author (year of publication)</th>
<th>Design of study, additional info on subject/location</th>
<th>Total no. investigated</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Manado, North Sulawesi</td>
<td>Halim et al(^{31}) (2006)</td>
<td>Retrospective cross sectional, hospital-based 2000-2003</td>
<td>148 (+) severe malaria falciparum</td>
<td>Age between 1 month-13 years old</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75/148= 50.67% Male, 73/148=49.32% female</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30/148=20.27% also suffer from anemia</td>
</tr>
<tr>
<td>16</td>
<td>Tomohon, North Sulawesi</td>
<td>Paendon et al(^{32}) (2016)</td>
<td>Retrospective cross sectional, hospital-based, 2011-2015</td>
<td>92 children age 0-18 years old</td>
<td>58/92=63% malaria falciparum, 18/92=37% malaria vivax</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Age 5-9 years 29/92=31.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gender: 61/92=66% male, 31/92=34% female</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anemia: 1/92=1.1% suffer from anemia (+)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 6/11=55% malaria tertian/vivax (+)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 5/11=45% malaria tropika/falciparum (+)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Complication: 2/6=33% pregnancy related malaria tertian/vivax ended with prematurity, 1/6=16.66% pregnancy related malaria tertian/vivax ended with asphyxia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 2/6=33% malaria tertian/vivax</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 2/5=40% malaria tropika/falciparum</td>
</tr>
<tr>
<td>18</td>
<td>Ternate, Ambon</td>
<td>Afiah(^{34}) (2019)</td>
<td>Retrospective cross sectional, hospital-based data</td>
<td>61 malaria (+) patient</td>
<td>Gender</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 35/61=52.9% male</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 26/61=47.1% Female</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean Hb for all samples: 10.34 g/dL</td>
</tr>
<tr>
<td>19</td>
<td>Ambon, Ambon Islands</td>
<td>Wabula et al(^{35}) (2019)</td>
<td>Retrospective cross sectional, population based</td>
<td>83 pregnant women on the 3rd semester</td>
<td>19/83=22.89% pregnant women suffer from anemia due to malaria or malaria infection that can caused anemia 20.2</td>
</tr>
<tr>
<td>20</td>
<td>West Sumba, Nusa Tenggara timur</td>
<td>De mast et al(^{36}) (2010)</td>
<td>Cross sectional</td>
<td>1197 Indonesian school children, aged 5-15 years</td>
<td>73/1197=6.1% had asymptomatic P. falciparum with mean Hb 12.62 g/dL and 18/1197=1.5% asymptomatic P. vivax parasitemia with mean Hb 12.2 g/dL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antimalarial medication improves Hb in both groups</td>
</tr>
<tr>
<td>21</td>
<td>Timor Tengah Selatan, Nusa Tenggara Timur</td>
<td>Panjaitan et al(^{37}) (2019)</td>
<td>Case control of 181 malaria (+) vs181 malaria (-), primary health care based</td>
<td>362 individuals</td>
<td>64/181=35.4% were suffer from anemia male 78/181=43.1%, female 103/181=56.9%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Age: <40 66/181=36.46%, ≥40 115/181=63.53%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No significant correlation between Malaria and Hb</td>
</tr>
<tr>
<td>22</td>
<td>Central Lombok, Nusa Tenggara Barat</td>
<td>Susilawati et al(^{38}) (2013)</td>
<td>Case control and primary health care</td>
<td>20 malaria vivax (+), 20 malaria falciparum (+), 20 control malaria (-)</td>
<td>Mean Hb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Malaria falciparum 10.5g/dl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Malaria vivax 12.2g/dl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean density of parasite is higher in falciparum group</td>
</tr>
<tr>
<td>S. no.</td>
<td>Location</td>
<td>Author</td>
<td>Design of study, additional info on subject/location</td>
<td>Total no. investigated</td>
<td>Findings</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------</td>
<td>-------------------------</td>
<td>---</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>23</td>
<td>Maumere, Nusa Tenggara Timur</td>
<td>Fitri et al(^{39}) (2014)</td>
<td>Cross sectional and hospital based</td>
<td>112 pair mother-infants, 92 evaluated for further analysis</td>
<td>Prevalence of congenital malaria in the endemic area 39/92=42.39% malaria (+), asymptomatic 21/39=53.84% malaria (+) suffer from anemia and 20/39=51.28% malaria (+) asymptomatic were looks ill Only anemia correlated significantly with malaria</td>
</tr>
<tr>
<td>24</td>
<td>East Sumba, Nusa Tenggara Timur</td>
<td>Irawan et al(^{40}) (2017)</td>
<td>Cross sectional hospital based</td>
<td>262 hospitalized malaria (+) patient</td>
<td>Male 123/262=46.9%, Female=139/262=53.1% Age >15 years old 143/262=54.58% Malaria falciparum 210/262=80.15%, malaria vivax 52/262=19.84% Mean Hb: malaria falciparum 11.0 g/dL, malaria vivax 10.84 g/dL</td>
</tr>
<tr>
<td>25</td>
<td>Timor Tengah Selatan</td>
<td>Hutagalung et al(^{41}) (2016)</td>
<td>Cross sectional, systematic random sampling and community based</td>
<td>555 healthy individual, aged >14 years, using nested PCR</td>
<td>Total 181/555=32.61% malaria (+), malaria falciparum 57/181=31.49%, malaria vivax 94/181=51.93% and mixed infection 30/181=16.57% Anemia (Hb≤10g/dL) malaria falciparum 34/57=59.64%, malaria vivax 58/94=61.7% and mixed infection 20/30=66.66%</td>
</tr>
<tr>
<td>26</td>
<td>Timor Tengah Selatan</td>
<td>Nugraha et al(^{42}) (2020)</td>
<td>Cross-sectional study using secondary data in 2013-2014 from 5 sub-districts in South Central Timor Regency</td>
<td>152 malaria (+) individual</td>
<td>Malaria vivax 95/152=62.5%, Malaria falciparum 57/152=37.5% Anemia (Hb≤11.23 g/dL) 75/152=49.34%, mean Hb vivax 43/75=57.33%, mean Hb 11.29 g/dl, falciparum 42.66% and mean Hb 11.13g/dL Mean Hb in falciparum group is lower than in vivax</td>
</tr>
<tr>
<td>27</td>
<td>Atambua, Nusa Tenggara Timur</td>
<td>Junarli et al(^{43}) (2017)</td>
<td>Cross sectional, hospital based September 2013 to February 2014</td>
<td>71 malaria tropical/malaria falciparum (+) individual</td>
<td>Gender: male 35/71=49.29%, Female 36/71=50.70% Fibrin (35.70-400C) 46/71= 64.78% Anemia 25/71=35.21%, mean Hb 11.65g/dl mild (8-11g/dl) 18/25=72%, moderate (6-8g/dL) 5/25=20% and severe (<6g/dL) 2/25=8% Variables that contributes to anemia age, gender, nutritional status and age is the most significant</td>
</tr>
<tr>
<td>28</td>
<td>Jayapura, Papua</td>
<td>Palit et al(^{44}) (2019)</td>
<td>Cross sectional, secondary hospital data based and regression modelling</td>
<td>160 malaria (+)</td>
<td>abnormal Hb level 80/160=50% abnormal Hb level at the age ≥40 75/80=93.75%, and < 40 5/80=6.25% Variables that contributes to anemia age, gender, nutritional status and age is the most significant</td>
</tr>
<tr>
<td>29</td>
<td>Nabire, Papua</td>
<td>Taati(^{45}) (2013)</td>
<td>Cross sectional, primary health care-based patient</td>
<td>45 toddlers</td>
<td>anemia 39/45=86.66% Malaria (+) 25/45=55.55% All malaria (+) also suffer from anemia</td>
</tr>
<tr>
<td>30</td>
<td>Mimika, Timika, Papua</td>
<td>Burdam et al(^{46}) (2016)</td>
<td>Cross sectional, households based asymptomatic children</td>
<td>533 blood film collected</td>
<td>malaria vivax 47/533=8.8% malaria falciparum 21/533= 3.9% Those with STH (+) were at significantly greater risk of suffer from P. vivax parasitemia Anaemia (Hb<10 g/dl) was present in 24.5% (122/497) of children and associated with P. vivax parasitemia, P. falciparum parasitemia, hookworm carriage, Plasmodium helminth co-infection and severe stunting.</td>
</tr>
</tbody>
</table>

Continued.
<table>
<thead>
<tr>
<th>S. no.</th>
<th>Location</th>
<th>Author (year of publication)</th>
<th>Design of study, additional info on subject/location</th>
<th>Total no. investigated</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Jayapura, Northeast Papua and Papua</td>
<td>Taylor et al<sup>47</sup> (2013)</td>
<td>Cross sectional combined with/followed prospectively at day 0, 3, 7 and 28</td>
<td>n=57 indigenous Papuan and 105 non-Papuan with limited malaria exposure, treated with chloroquine, doxycycline or both for acute non complicated malaria vivax (n=64) and malaria falciparum (n=98)</td>
<td>Mean initial Hb 12.7g/dL (similar in both group), even though in vivax group, the Papuan group had lower baseline HB compared to the non-Papuan group. Hb recovery related to baseline Hb. Vivax infected malaria immune Papuan had persistently lower Hb concentrations compared to non-Papuan with limited malaria exposure.</td>
</tr>
<tr>
<td>32</td>
<td>Southern Papua, Papua</td>
<td>Douglas et al<sup>48</sup> (2013)</td>
<td>Cross sectional, referral hospital secondary data of laboratory and clinical data from April 2004 to December 2012</td>
<td>219,845 Hb measured</td>
<td>malaria falciparum: 89,748 clinical events, 44, 171 patients. malaria vivax: 54, 495 clinical events, 28, 841 patients. mixed: 19, 569 clinical events from 14, 206 patients. Mixed infections were at the greatest risk of severe anemia.</td>
</tr>
<tr>
<td>33</td>
<td>Southern Papua, Papua</td>
<td>Kenangalem et al<sup>49</sup> (2016)</td>
<td>A three-stage, cross-sectional, community survey to determine the proportion of anemia severity (Hb <7 g/dl) attributable to patent P. vivax, P. falciparum and mixed parasitemia in Papua, Indonesia.</td>
<td>3890 blood sample</td>
<td>Malaria type: Falciparum: 315 (8.1%) Vitax: 250 (6.4%) Mixed: 72 (1.9%) Mean reduction in hemoglobin: Malaria falciparum: 1.16 g/dl Malaria vivax: 0.66 g/dl Mixed: 1.25 g/dl Hb concentrations <7 g/dl in the community were estimated to be attributable to patent parasitemia. Plasmodium vivax was associated with a greater than three-fold higher attributable fraction of anaemia in infants compared with P. falciparum.</td>
</tr>
<tr>
<td>34</td>
<td>Mimika district, South-Central Papua, Papua</td>
<td>Lampah et al<sup>50</sup> (2015)</td>
<td>Cross sectional, hospital based, data mainly focus on platelet count measurements (Hb included) were available in 215,479 patients, 66,421 (30.8%) of whom had clinical malaria</td>
<td>215,479 patients</td>
<td>7931/215 044=3.68% had severe anemia. 1484/7931=18.7% had the risk of severe thrombocytopenia among patients with severe anemia. The overall adjusted population fraction of severe thrombocytopenia attributable to P. falciparum infection was 35.9%, P. vivax was 9.1% and mixed infections was 7.0%. Severe anemia is an important prognostic indicator of fatal outcome, particularly in young children.</td>
</tr>
<tr>
<td>S. no.</td>
<td>Location</td>
<td>Author (year of publication)</td>
<td>Design of study, additional info on subject/location</td>
<td>Total no. investigated</td>
<td>Findings</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>--</td>
<td>------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
- \(P. falciparum \) \(\frac{6184}{15,716} = 39.3\% \)
- \(P. vivax \) \(\frac{7499}{15,716} = 47.7\% \)
- \(P. malariae \) \(\frac{203}{15,716} = 1.3\% \)
- \(P. ovale \) \(\frac{3}{15,716} = 0.00019\% \)
- Mixed infections \(1827 (11.6\%) \)
Within 1 year, 48.4\% (7620/15,716) of children represented a total of 16,957 times with malaria (range 1 to 11 episodes) the incidence of malaria being greater in patients initially presenting with \(P. vivax \) group
Mortality after initial presentation 266/15,716=1.7\% within 1 year, 129/15,716=0.82\% within 30 days. 137/15,716=0.87\% between 31 and 365 days, no significant difference in the mortality risk in patients infected with \(P. vivax \) versus \(P. falciparum \) either before 30 days or between 31 and 365 days
children <5 years with malaria vivax are at significant risk of multiple episodes of malaria and of dying within 1 year of their initial presentation |
| 36 | Southern Sorong Papua | Abdussalam et al (2016) | Cross sectional hospitalized and out patients | 45 children | Gender: 25/45=55.45 boys, 20/40=44.45% girls, 24/45=53.3% affected were between 1-5 years old. 30/45=66.7% malaria falciparum/tropical (+), 25/45=55.6% anemia (+), Hb ranging 8-10 gram/dl and 19/45=42.2% Wasting, 16/45=35.6% stunting |
To define malaria morbidity in the first year of life in an area where both multidrug-resistant \(P. falciparum \) and \(P. vivax \) are highly prevalent, data of all infants attending a referral hospital in Papua, Indonesia | 4976 infants hospitalized | 1560/4976=31.35% malaria (+) 102/187=56% had malaria vivax, and 55/187=29.41% had malaria falciparum infection equally attributable to both types of malaria. The case-fatality rate was similar for inpatients with malaria falciparum (13/599=2.2% patients died) and malaria vivax (6/603=1.0% died) severe malarial anemia was more prevalent in malaria vivax (193/605=32% vs 144/601=24%) and that was associated with a greater risk of anemia. In these young infants, infection with \(P. vivax \) was associated with a greater risk of severe anemia and severe thrombocytopenia compared to malaria falciparum. |
Anemia caused by malaria reported in these studies also varies, from mild anemia with minimal subjective complaint from the patients to the severe form of anemia that can endanger the life of the patient.

DISCUSSION

Severe malarial anemia (SMA) surely marks concern as a major public health problem because of the burdens of the affected children and also pregnant women.\(^{9,10}\) It is possibly that these numbers may escalate as the consequences of several reasons, e.g., difficulty in making correct diagnosis, drug unavailability, potency of drug resistance phylogeny spreads, limitation of medical devices, remoteness of an area that making the health personal difficult to transfer/refer patient and possible comorbidities. If we look back to the Figure 1, Indonesia is an archipelago consists of 13,600+ islands, with a very wide area and different topographic condition. The remoteness of an area, especially if that area is malaria endemic, is going to complicate the patient management, e.g. in case the doctors want to refer the patient to a more advanced health care facility.

Concerns have also been raised by data from recent epidemiological studies, which reported this severity related to other comorbidities. Malaria and anemia, both also increase the host’s susceptibility to other secondary infection.\(^{11,12}\) Even for such people living in endemic areas that already have acquired protection from acute infection, they still may succumb to severe anemia during a subacute or chronic phase of infection.\(^{1,13}\) Transfusing blood into such patient and managing them collectively and supportively also a very big challenge.\(^{1,2}\)

The availability of electronic data on anemia related malaria in Indonesia is still sparse and detached. A more holistic surveillance needed with emphasize on its comorbidities, vulnerable groups, anti-malaria treatment given and how well the patient recover.

Fatality or mortality due to severe malaria anemia should have prevented earlier.\(^1\) By making correct diagnosis as soon as possible and then start prompt treatment, complication can be avoid.\(^{8-10}\) In a community perspective, preventing recurrent malaria must be a public health priority in this vulnerable population.\(^{51}\) Preventive strategies, early diagnosis, and prompt treatment should be initiated in the correct time appropriately by all stake holder.\(^1\) By actively reducing the number of cases seems to be easier than sustained elimination.\(^2\) All of this effort if conducted simultaneously can paved the way for malaria eradication.\(^{1,2}\)

CONCLUSION

This brief literature study has revealed the condition of anemia related malaria from cases reported in Indonesia from 2001-2019. Eventhough many achievement have been done so far, these studies also informed us that malaria still a big parasito-epidemiology problem in Indonesia. Prevention of transmission and proper management of malaria needed in order to avoid worse case scenario of severe malaria and its complication.

ACKNOWLEDGEMENTS

Thanks to Dr. Ribka Tjiptaning P. AAK, Dr. Charles Mesang, Dr. H. R. Agung Laksono, Dr. H. J. Indrawati Sukadis Msi, Dr. Yenni Tan, MARS whom collectively supported funding for fast track publication of this manuscript. The author states that he has no conflict of interest over funding and that the overall topics reviewed are based on freedom in scientific expression using trustworthy scientific method.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: Not required

REFERENCES

12. Etiaba E, Onwujekwe O, Uzochukwu B, Uguru N, Okoronkwo I, Adjagba A. What co-morbidities do people with malaria have and what are their patterns

Cite this article as: Siagian FE. A literature study of anemia among malaria cases reported in Indonesia, from west to east: a parasito-epidemiology perspective. Int J Community Med Public Health 2020;7:4135-45.