Original Research Article

Assessment and association of various factors affecting pulmonary function of workers of a factory

Shreyans D. Singhvi*, Preksha T. Singh, Rafe M. Khan

Department of Medicine, Sardar Vallabhbhai Patel Institute of Medical Sciences and Research, Ahmedabad, Gujarat, India

Received: 09 March 2020
Revised: 10 April 2020
Accepted: 15 April 2020

*Correspondence:
Dr. Shreyans D. Singhvi,
E-mail: shreyanssinghvi4@gmail.com

ABSTRACT

Background: Occupational health diseases are becoming vividly active in the present scenario of the generation. Because of the active industrialization of the world, in the last century various industries are growing each and every day in various fields in multiple countries. Textile industries alone are one of the most common industry and a source of occupation for more than 20 million workers in India itself. Therefore, it is very important to ensure proper preventive and medical strategies for the industrial workers.

Methods: A cross sectional study of 240 workers in a textile industry, was performed. For the study, a well structural questionnaire and peak expiratory flow rate (PEFR) examination was used. Several factors were considered for the abnormality of the PEFR and considerable associations were questioned. The statistical analysis is made by chi-square test and p values.

Results: There are positive association found with abnormal PEFR found and multiple factors including age of the workers, duration of exposure and type of exposure.

Conclusions: The industrial workers are very prone to develop pulmonary occupational diseases; therefore, it is very important to make preventive measures for its associative factors causing it.

Keywords: Function, Pulmonary, Textile, Workers

INTRODUCTION

Occupational health diseases are becoming vividly active in the present scenario of the generation. Because of the active industrialization of the world, in the last century various industries are growing each and every day in various fields in multiple countries. Textile industries alone are one of the most common industry and a source of occupation for more than 20 million workers in India itself. Since the workers in the textile Industries have a continuous exposure for years, it can severely affect the health of the workers. There can be several factors affecting the pulmonary function of the workers in the textile industries. As, it is commonly seen in various industries in India, most of the workers do not use any intervention in the course of their work and are therefore more prone to develop long term sequelae due to the same.

In this study we used peak expiratory flow rate (PEFR) to suspect pulmonary function abnormality. PEFR is an effort dependent test, reflects the status of large airways. PEFR is considered as one of the best measurements of fast exhalation of an individual and commonly used for testing breath shortness, cough, and wheezing. Measurement of PEFR in our study along with association of various factors with abnormal PEFR may provide the better understanding of respiratory functioning and abnormality and its relation to various factors in textile workers. Therefore, the objective of the
study is assessment of sociodemographic profile, pulmonary function and its association with various chosen factors to the exposed and non-exposed workers of the textile factory.

METHODS

A cross-sectional study of 240 industrial workers working in a cotton textile industry, Mahalaxmi Mills, Narol, Ahmedabad, was undertaken from April 2019 to September 2019. Selection of subjects for the sample included the workers working in Mahalaxmi enterprises, a cotton textile industry in Ahmedabad. It comprised of 240 workers who were directly and indirectly exposed and were having similar age group and socio-economic status.

Inclusion criteria

Workers working in the day shift of the factory, workers with minimum one year of exposure, workers in the age group of 18-50 years, workers who gave well informed verbal consent to participate in the study.

Exclusion criteria

Workers who were absent during the study, workers suffering from another respiratory disorder, workers with a history of respiratory medicine, workers with history of tobacco, smoking or alcoholism and workers who did not give the consent to the study.

A structural self-constructed questionnaire was used in the study. A well-informed verbal consent was taken by the participants of the study. It had open and closed ended questions. The questionnaire included Socio-demographic information in the form of age, sex, educational status and economic status of the workers. Occupational history was also included in the questionnaire including department of work, work experience and socio-economic status. Peak expiratory flow rate (PEFR) examination was performed to the participants of the study.

The following steps were adopted to measure PEFR

- The marker was moved to the bottom of scale.
- The subject was asked to stand up straight.
- The subject was asked to take a deep breath.
- The subject was asked to hold his/her breath while the mouth piece was placed inside, between the teeth and they were asked to close their lips and to not put their tongue against or inside the hole.
- The subject was asked to blow out as hard and fast as possible.
- The number shown on the scale was recorded.
- The marker was moved back to the bottom and the above steps were repeated two more times.

The highest of the 3 recordings was taken as the PEFR.

RESULTS

Initially, the demographic profile of the workers was studied. In the study of 240 workers, 216 (90%) were males and 24 (10%) were females. Further, the age groups of the workers were studied - maximum number of workers were found in the age group of 30-34 and the minimum number of workers were found in the age group of 18-22 (Table 1).

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>Total number of workers</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-22</td>
<td>9</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>22-26</td>
<td>24</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>26-30</td>
<td>40</td>
<td>38</td>
<td>2</td>
</tr>
<tr>
<td>30-34</td>
<td>47</td>
<td>41</td>
<td>6</td>
</tr>
<tr>
<td>34-38</td>
<td>41</td>
<td>35</td>
<td>6</td>
</tr>
<tr>
<td>38-42</td>
<td>33</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>42-46</td>
<td>19</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>46-50</td>
<td>27</td>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>240</td>
<td>216</td>
<td>24</td>
</tr>
</tbody>
</table>

The next demographic factor studied was educational status of the workers- Maximum number of workers were found to have had secondary education, while very few were just literates. 0.92% of males were just literate and 0% females were found just literate. 57.87% males and 66.66% females had secondary education. 18.51% males and 29.16% females had higher secondary education and 22.68% males and 1% females were graduates.

The next demographic factor studied was the economic status of the workers- Maximum number of workers had income in the range of Rs. 10000-20000. The mean income of the workers found was Rs. 16,700. 13.88% of males and 25% females had income Rs. ≤1000. 61.11% males and 75% females had income Rs. 10001-20000. 16.66% males and 36% females had income in the range of Rs. 20001-30000. 6.01% males and 0% females had income in the range of Rs. 30001-40000 and only 2.31% males and 0% females had income Rs. >4000.
The next factor studied was the type and section of exposure of the workers of the factory. Maximum number of workers had exposure with hazardous chemicals (59.58%) (Table 2). The next factor studied was the years of exposure of the workers of the factory, maximum number of workers had 1-5 years of exposure (Table 3).

Table 2: Section and type of exposure of the workers.

<table>
<thead>
<tr>
<th>Section of exposure</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
<th>Percentage</th>
<th>Type of exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>4.16</td>
<td>No exposure</td>
</tr>
<tr>
<td>Boiler</td>
<td>29</td>
<td>11</td>
<td>40</td>
<td>16.55</td>
<td>Excessive heat, lubricating oil, coal, grease</td>
</tr>
<tr>
<td>Checking** helper work, stitching</td>
<td>31</td>
<td>13</td>
<td>44</td>
<td>18.83</td>
<td>Dust, cotton dust, fumes of flannel cotton fabrics</td>
</tr>
<tr>
<td>Engineer*, production unit, quality check (Q.C.), storing unit</td>
<td>143</td>
<td>0</td>
<td>143</td>
<td>59.58</td>
<td>Chemicals and fumes, iron, zinc, xylene, toluene, benzene, caustic soda, reactive colors</td>
</tr>
<tr>
<td>Effluent treatment plant</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1.25</td>
<td>Sewage water and chemicals</td>
</tr>
</tbody>
</table>

**Checking before dispatch of products, *Engineering department for the maintenance of machinery.

Table 3: Years of exposure of workers.

<table>
<thead>
<tr>
<th>Years of exposure</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>83</td>
<td>18</td>
<td>101</td>
<td>42.083</td>
</tr>
<tr>
<td>6-10</td>
<td>69</td>
<td>6</td>
<td>75</td>
<td>31.25</td>
</tr>
<tr>
<td>11-15</td>
<td>43</td>
<td>0</td>
<td>43</td>
<td>17.916</td>
</tr>
<tr>
<td>16-20</td>
<td>18</td>
<td>0</td>
<td>18</td>
<td>7.5</td>
</tr>
<tr>
<td>21-25</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0.83</td>
</tr>
<tr>
<td>26-30</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.416</td>
</tr>
<tr>
<td>Total</td>
<td>216</td>
<td>24</td>
<td>240</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4: Association between age and peak expiratory flow rate.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Normal PEFR (>350 ml/min)</th>
<th>Abnormal PEFR (≤350 ml/min)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>18-20</td>
<td>4</td>
<td>6.153</td>
<td>5</td>
</tr>
<tr>
<td>20-24</td>
<td>12</td>
<td>18.46</td>
<td>12</td>
</tr>
<tr>
<td>25-29</td>
<td>15</td>
<td>23.07</td>
<td>25</td>
</tr>
<tr>
<td>30-34</td>
<td>13</td>
<td>20</td>
<td>34</td>
</tr>
<tr>
<td>35-39</td>
<td>9</td>
<td>13.8</td>
<td>32</td>
</tr>
<tr>
<td>40-44</td>
<td>6</td>
<td>9.23</td>
<td>27</td>
</tr>
<tr>
<td>45-49</td>
<td>2</td>
<td>3.07</td>
<td>17</td>
</tr>
<tr>
<td>50-60</td>
<td>4</td>
<td>6.15</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>65</td>
<td>175</td>
<td>240</td>
</tr>
</tbody>
</table>

Table 5: Association between exposure of excessive heat, lubricating oil, coal, grease and abnormal PEFR.

<table>
<thead>
<tr>
<th>Type of exposure</th>
<th>PEFR normal (>350 ml/min)</th>
<th>PEFR abnormal (≤350 ml/min)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No exposure</td>
<td>4</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Excessive heat, lubricating oil, coal, grease</td>
<td>10</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>

Table 6: Association between dust, cotton dust, fumes of flannel cotton fabrics and abnormal PEFR.

<table>
<thead>
<tr>
<th>Type of exposure</th>
<th>PEFR normal (>350 ml/min)</th>
<th>PEFR abnormal (≤350 ml/min)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No exposure</td>
<td>4</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Dust, cotton dust, fumes of flannel cotton fabrics</td>
<td>5</td>
<td>39</td>
<td>44</td>
</tr>
</tbody>
</table>
A null hypothesis was formed indicating no association between abnormal PEFR and exposure of dust, cotton dust, Fumes of flannel cotton fabrics, Chi-square test found was 4.81091 and p value found was 0.02828. Thus, null hypothesis stands void and there is a positive association between the factors found (Table 6).

The next factor studied was the effect of exposure of sewage water and chemicals on PEFR. A null hypothesis was formed indicating no association between abnormal PEFR and exposure of Sewage water and chemicals, Chi-square test found was 6.8276 and p value found was 0.008976. Thus, null hypothesis stands void and there is a positive association between the factors found (Table 7).

The next factor studied was the effect of exposure of sewage water and chemicals on PEFR. A null hypothesis was formed indicating no association between abnormal PEFR and exposure of Sewage water and chemicals, Chi-square test found was 1.7333 and p value found was 0.188816. Thus, null hypothesis stands and there is no association between the factors found (Table 8).

The next factor studied was the effect of years of exposure of on PEFR. A null hypothesis was formed indicating no association between abnormal PEFR and years of exposure, Chi-square test found was 16.528 and p value found was 0.008976. Thus, null hypothesis stands void and there is a positive association between the factors found (Table 9).

DISCUSSION

Occupational health diseases are proving to be a concerning factor in the medical sciences. There are various factors responsible for the enhancement of this health hazard. This study has shown a positive association between decreasing pulmonary function and years of exposure, type of exposure and the age of the workers.

<table>
<thead>
<tr>
<th>Type of exposure</th>
<th>PEFR normal (>350 ml/min)</th>
<th>PEFR abnormal (≤350 ml/min)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No exposure</td>
<td>4</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Chemicals and fumes, iron, zinc, xylene, toluene,</td>
<td>16</td>
<td>127</td>
<td>143</td>
</tr>
<tr>
<td>benzene, caustic soda, reactive colors</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Association between chemicals and fumes, iron, zinc, xylene, toluene, benzene, caustic soda, reactive colors and abnormal PEFR.

<table>
<thead>
<tr>
<th>Type of exposure</th>
<th>PEFR normal (>350 ml/min)</th>
<th>PEFR abnormal (≤350 ml/min)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No exposure</td>
<td>4</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Sewage water and chemicals</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 8: Association between sewage water and chemicals and abnormal PEFR.

<table>
<thead>
<tr>
<th>Years of exposure</th>
<th>PEFR normal (>350 ml/min)</th>
<th>PEFR abnormal (≤350 ml/min)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>44</td>
<td>57</td>
<td>101</td>
</tr>
<tr>
<td>6-10</td>
<td>27</td>
<td>48</td>
<td>75</td>
</tr>
<tr>
<td>11-15</td>
<td>11</td>
<td>32</td>
<td>43</td>
</tr>
<tr>
<td>16-20</td>
<td>2</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>21-25</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>26-30</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 9: Association between years of exposure and abnormal PEFR.
This study is consistent with other studies which also pointed out the various environmental factors, working conditions, and occupational status from different sectors responsible for impact on a health of an individual. There was another study which proved that long-term exposure to cotton dust was found to be associated with obstructive disease which increases with the duration of exposure and correlated with the pulmonary function. Authors received similar results with our study. Although, there is a study which observed an inverse relationship between chronic exposure to cotton dust and pulmonary functions after observing decreased level of PEFR in cotton mill workers. While there are multiple studies which observed a decreased PEFR in the exposed group of individuals compared to the non-exposed group of individuals. In this study authors found a long-term effect exposure effect on the individuals, this is supported by another study which showed a significant reduction in respiratory functions due to continuous exposure to cotton dust.

Table 10: Association of various factors with abnormal PEFR.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Normal PEFR</th>
<th>Abnormal PEFR</th>
<th>Chi-square value</th>
<th>P value</th>
<th>Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (in years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-22</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-26</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26-30</td>
<td>15</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-34</td>
<td>13</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34-38</td>
<td>9</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38-42</td>
<td>6</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42-46</td>
<td>2</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46-50</td>
<td>4</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years of exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-5</td>
<td>44</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-10</td>
<td>27</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-15</td>
<td>11</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-20</td>
<td>2</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-25</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26-30</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excessive heat, lubricating oil, coal, grease</td>
<td>10</td>
<td>30</td>
<td>0.892867</td>
<td>0.3447</td>
<td>No</td>
</tr>
<tr>
<td>Dust, cotton dust, fumes of flannel cotton fabrics</td>
<td>5</td>
<td>35</td>
<td>4.81091</td>
<td>0.02828</td>
<td>Yes</td>
</tr>
<tr>
<td>Chemicals and fumes, iron, zinc, xylene, toluene, benzene, caustic soda, reactive colors</td>
<td>16</td>
<td>127</td>
<td>6.8276</td>
<td>0.008976</td>
<td>Yes</td>
</tr>
<tr>
<td>Sewage water and chemicals</td>
<td>0</td>
<td>3</td>
<td>1.73333</td>
<td>0.18816</td>
<td>No</td>
</tr>
</tbody>
</table>

CONCLUSION

This study has helped in acknowledging the health hazard faced by workers in the industrial field. They are frequently in close constant exposure to various chemicals which can lead to morbidity, financial crisis and even mortality. The study has acknowledged various factors affecting the pulmonary function of the workers and it impedes routine health care check-ups and a strict use of person protective equipment for the workers to prevent them leading to an occupational health disease.

ACKNOWLEDGEMENTS

Authors would like to thank the Mahalaxmi Mills, Narol for giving us the permission to perform the study and the workers for giving us the consent to perform the study.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

3. Saji MO, Alhas JJ, Siraj S. Study on the impact of patient counselling on the quality of life and...

Cite this article as: Singhvi SD, Singh PT, Khan RM. Assessment and association of various factors affecting pulmonary function of workers of a factory. Int J Community Med Public Health 2020;7:1954-9.