A study on assessment of mass drug administration for elimination of lymphatic filariasis in Datia district, Madhya Pradesh

Ginisha Gupta¹, Priyesh Marskole²*, Praveen Yuwane³

¹National Centre for Disease Control, Delhi, India
Department of Community Medicine, ²Gajara Raja Medical College, Gwalior, ³Chirayu Medical College, Bhopal, Madhya Pradesh, India

Received: 02 February 2018
Revised: 19 February 2018
Accepted: 21 February 2018

*Correspondence:
Dr. Priyesh Marskole,
E-mail: priyesh.marskole@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Currently 947 million people globally live in areas having endemic lymphatic filariasis and require preventive chemotherapy to stop the spread of infection. LF is transmitted by many mosquitoes particularly Culex and in some areas by Anopheles and Aedes too. This study was conducted to assess the programme implementation with respect to process and outcome indicators and to assess the reasons for non-compliance among population.

Methods: We conducted a cross sectional study in Datia district, Madhya Pradesh during September 2014. We determined the sample size for survey based on standard guidelines for MDA coverage assessment. We identified four separate clusters, each with thirty households, for the survey. We selected three clusters from rural areas and one cluster from urban area to ensure adequate representation. We used stratified sampling technique for selection of three rural clusters.

Results: We surveyed 859 study participants of Indergarh block, Datia district, residing in 120 households across four clusters. Among 859 study participants, the eligible population (excluding less than two year child and pregnant females) was 92% (790/859). District health authorities reported coverage of MDA across entire district to be 91%. We determined the distribution rate of DEC across all four clusters to be 84% (±9%). We identified highest drug distribution rate in Uchad (97%; 193/200) and lowest in Bargai (75%; 133/178).

Conclusions: Non-compliant individuals are potential reservoir for the parasite which may serve as source of infection and transmission even after the mass drug administration ceases. As the prevalence of lymphatic filariasis continues to decrease with the implementation of control measures, addressing the issue of non-compliance holds primary importance to further substantiate the effect of our efforts.

Keywords: Lymphatic filariasis, Wuchereria bancrofti, Elimination, Diethylcarbamazine

INTRODUCTION

Lymphatic filariasis (LF), a neglected tropical disease, is caused by infection from Nematodes (roundworms) particularly Wuchereria bancrofti, Brugiamalayi and Brugiatimori. First two of these nematodes are commonly found in India.¹ Currently 947 million people globally live in areas having endemic LF and require preventive chemotherapy to stop the spread of infection. LF is transmitted by many mosquitoes particularly Culex and in some areas by Anopheles and Aedes too. The global programme to eliminate LF began its first mass drug administration (MDA) campaign in 1999 after the 50th World Health Assembly resolved that LF should be eliminated as a public health problem.² World Health Organization (WHO) mainly focuses on 2 point strategy to move towards control and elimination of the disease. Chemoprophylaxis of people living in endemic area in...
form of mass drug administration (MDA) forms the
mainstay of progress towards elimination of the disease.
In 2000, WHO launched the global programme to
eliminate lymphatic filariasis (GPELF) which in 2012,
reconfirmed the target date for elimination by 2020.3
Indigenous cases of LF are reported from about 250
districts across 15 states and 5 union territories in India.4

National filaria control program was launched in India in
1955 after a pilot project in Orissa from 1949 to 1954.
Annual MDA of diethylcarbamazine and albendazole
tablets for 5 years or more to all population (except
pregnant women and children less than 2 years) in
demic areas to interrupt transmission of disease has
been the mainstay of implementation strategies under
the programme since 2004.5 The Ministry of Health &
Family Welfare approved the use of combination of DEC
and albendazole (400 mg) in September, 2006.6

In India, the coverage has risen from 72% in 2004 to 87%
in 2014 with reduction in microfilaria rate from 1.2% in
2004 to 0.4% in 2014. In the state of Madhya Pradesh,
MDA coverage has raised from 74% in 2004 to 91% in
2014.7

The annual round of MDA is observed as National filaria
day each year since 2004. Madhya Pradesh adopted
MDA strategy for elimination of LF in 2004 with the first
annual round of MDA carried out on June 05, 2004.
Evaluation of activities conducted during the annual
round has been an integral component of the strategy.
Datia district in Madhya Pradesh is one of the endemic
districts for LF. The annual round of MDA was held on
September 14, 2014. House to house administration of
DEC (6 mg/kg) and Albendazole (400 mg) was carried out
by drug distributors in the endemic districts.

Evaluation of the activities carried out on National filaria
day was done in Datia district with the following
objectives:
1. To assess the programme implementation with
 respect to process and outcome indicators.
2. To assess the reasons for non-compliance among
 population.
3. To make recommendations based on the findings.

METHODS

We conducted a cross sectional study in Datia district,
Madhya Pradesh during September 2014. We determined
the sample size for survey based on standard guidelines
for MDA coverage assessment. We identified four
separate clusters, each with thirty households, for the
survey. We selected three clusters from rural areas and
one cluster from urban area to ensure adequate
representation. We used stratified sampling technique for
selection of three rural clusters.

We divided the area under primary health centres (PHC)
of the entire district into three strata based on the
coverage of mass drug administration: PHC with
coverage less than 50%; coverage between 50-80%; and
coverage more than 80%. We selected one PHC defined
area using simple random sampling (using random
number generated by Microsoft excel) within each
stratum. If there was no PHC in a particular stratum, two
PHCs were selected from the next higher stratum. We
selected one ward from the list of wards using simple
random sampling (using random number generated by
Microsoft excel) to identify the urban cluster for the
survey. We surveyed 120 households across four clusters.
Three identified rural clusters include Bargai, Badoi and
Uchad and one identified urban cluster included ward 1,
Indergarh.

We used a pre-designed interviewer- administered
multiple response close ended structured questionnaire
as the data collection instrument. We collected data by
active house-to-house surveys. In-depth interviews were
conducted with the district malaria officer, frontline
health workers, community leaders, and non-compliant
individuals.

We used three process indicators for assessment of
coverage of mass drug administration (MDA) of di-ethyl
carbamazine (DEC): coverage; drug compliance/
ingestion; and effective coverage of MDA. Coverage
of MDA was calculated as the proportion of eligible
population in a community that was given the drug. We
determined the coverage based on reports procured from
district health officials. In case coverage was unavailable
with district health officials, the data was collected from
community health worker (auxillary nurse midwife) of
the concerning cluster.

We calculated drug compliance/ingestion rate as the
proportion of population who ingested the drug among
those who were distributed the drug. We excluded
population less than two years of age and pregnant
females among the surveyed population to determine the
eligible population in the cluster. We calculated the
effective coverage of MDA as the proportion of
population who ingested the drug among the eligible
population.

We identified the reasons for non-compliance from all
individuals who received the drug but did not ingest it.
We identified reasons based on literature review and
standard guidelines and included lack of awareness, fear
of side effects, improper counseling, and unavailability
of person during distribution, among others in the
questionnaire. We compiled and analyzed data to
calculate proportions and summary statistics in Epi Info
version 7.

We collected information about the information
education and communication (IEC) materials such as
pamphlets, banners, wall paintings, etc. distributed across
the district from the district health officials. We observed the IEC materials used and displayed in and around the clusters at health facilities, bus and railway stations, and shopping and religious places.

RESULTS

We surveyed 859 study participants of Indergarh block, Datia district, residing in 120 households across four clusters. Among 859 study participants, the eligible population (excluding less than two year child and pregnant females) was 92% (790/859).

District health authorities reported coverage of MDA across entire district to be 91%. We determined the distribution rate of DEC across all four clusters to be 84% (±9%). We identified highest drug distribution rate in Uchad (97%; 193/200) and lowest in Bargai (75%; 133/178).

We calculated the drug ingestion or compliance rate based on recall as 77% (±11%), highest in Uchad (89%; 171/193) and lowest in urban Indergarh cluster (65%; 105/162).

We determined the average effective coverage among population surveyed as 65% (±16%). The effective coverage was lowest (52%; 105/202) in urban cluster, Indergarh whereas highest (86%; 171/200) in rural cluster Uchad (Table 1).

We identified fear of side effects (36%; 53/148) and lack of awareness about the disease/treatment (23%; 35/148) as the most common reasons for non-compliance (Table 2).

The IEC material procured and distributed across district included 400 banners, 400,000 appeals and hand bills and 500 caps. Loud speaker announcement (one time) and print information in local newspaper was carried out in all four blocks of the district. The wall paintings regarding mass drug administration of DEC and LF were found only in government health facilities in the selected clusters. No wall paintings or banners were observed at religious areas, bus stands or railway station.

<table>
<thead>
<tr>
<th>Table 1: Drug distribution, compliance and effective coverage of MDA across four clusters, Datia district, 2014.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total population surveyed</td>
</tr>
<tr>
<td>(a)</td>
</tr>
<tr>
<td>Indargarh (Urban)</td>
</tr>
<tr>
<td>Bargai</td>
</tr>
<tr>
<td>Badoni</td>
</tr>
<tr>
<td>Uchad</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2: Reasons for non-compliance with MDA drive, Datia, 2014 (n=148).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason for non-compliance</td>
</tr>
<tr>
<td>Fear of side-effects</td>
</tr>
<tr>
<td>Lack of awareness</td>
</tr>
<tr>
<td>Other/miscellaneous</td>
</tr>
<tr>
<td>Absent at time of drug distribution</td>
</tr>
<tr>
<td>Forgot to take the drug</td>
</tr>
<tr>
<td>Improper counseling</td>
</tr>
</tbody>
</table>

DISCUSSION

Even with scaled efforts towards elimination of LF, the average effective coverage of the mass drug administration in Datia district remains 65%. The greater disparity between coverage as reported by district authorities and as determined by the survey comes as a check and emphasizes on the gaps in the system. Effective coverage was found to be lower in urban areas as compared to rural areas. Similar pattern was found in other parts of the country as well.8 One of the main reasons of non-compliance to the drug was found to be fear of side effects. Same reason was found in Bankura district, West Bengal and was consistent with another study conducted in northern Brazil where the fear of side effects was a concerning cause among the non-compliant population.8,9 Non-compliance is shown to have different reasons among males and females.9 Another study conducted in Haiti found that lack of awareness about the disease, its control program and the medication was primary cause of non-compliance.10
Lack of awareness about the disease and its control can be attributed to suboptimal IEC activities as observed in the community. The IEC activities carried out by the district health authorities showed little information to make community aware of the possible side effects of the drugs.

Due to limited scope of our study, detailed information about the non-compliant individuals was not captured in our study which limits our understanding of specific reasons in a particular gender, age or religion/caste groups and hence prevents us to target our actions for improvement. We recognize recall bias as a potential limitation of the study design as study respondents do not tend to remember once-a-year administration of drug with limited IEC activities, particularly if counseling regarding the drug is poor.

CONCLUSION

Non-compliant individuals are potential reservoir for the parasite which may serve as source of infection and transmission even after the mass drug administration ceases. As the prevalence of LF continues to decrease with the implementation of control measures, addressing the issue of non-compliance holds primary importance to further substantiate the effect of our efforts. We recommend emphasizing the importance of drug distribution with administration under supervision to community health workers, voluntary workers and community leaders, with particular efforts in counseling of the beneficiaries regarding the disease, its treatment and the side effects of the drugs, to ensure drug compliance. Efforts are needed, in terms of political will, commitment of governmental and non-governmental organizations, and the staff at all levels, to make progress towards control of LF as a public health problem.

ACKNOWLEDGEMENTS

To the Dean, GRMC, Gwalior.

Funding: Govt of Madhya Pradesh
Conflict of interest: None declared
Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES
