The incidence and prevalence of urinary tract calculi has increased significantly during the past decade. Accurate fast diagnostic modalities were developed to cope with such an increased trend. To date, non-contrast CT scan remains the diagnostic modality of choice for evaluation of patients with urinary tract calculi. However, contrast CT scans are gaining more interest. In this review, both diagnostic modalities were reviewed with the advantages and disadvantages of each. Non-contrast CT scan is a rapid, accurate, less hazardous, less expensive imaging modality that has a high sensitivity in detection of urinary calculi as small as 3 mm. However, it cannot evaluate other probable causes of flank pain. Thus, contrast CT scans can be used in situations where clinical presentation is suspicious and the possibility of other differential diagnoses is considered. Contrast CT scans do not decrease the sensitivity of detecting urinary calculi, and they do have a higher sensitivity in detecting small grades of obstruction as well as evaluating other possible causes of flank pain such as neoplasms, infectious, or inflammatory aetiologies.

Keywords: Urinary tract calculi, CT, Contrast, Non-contrast
factors accused of being risky for the development of urinary tract calculi are dietary factors and climate changes.3 Recent increase in consumption of fast food, starchy food, oxalates, sodium, and animal proteins, along with reduction of fluid and calcium intake contributed notably to increased risk of calculi formation.3,6,7 Additionally, global warming was reported to be a significant contributor. Studies depicted a proportionate relationship between increased climate temperature and incidence of urinary calculi formation.8 Another significant and important contributor of increased incidence as well as prevalence of urinary tract calculi is the enhancement of diagnostic tools. The past few decades have witnessed a notable improvement in diagnostic imagining and techniques that probably resulted in increased incidence and prevalence of the disease.

DIAGNOSIS OF URINARY TRACT CALCULI

Diagnosis of urinary tract calculi depends mainly of the clinical presentation. However, confirmatory investigations are often required. Patients with urinary tract calculi classically present with acute severe flank pain that radiates inferiorly and anteriorly to the groin. The location and radiation of pain depends on the site of urinary calculi. Intense nausea, with or without vomiting, accompany pain in at least 50\% of the patients. Haematuria and recurrent urinary tract infection are not uncommon. Some patients may experience symptoms of irritative voiding such as dysuria and frequency. Patients with small non-obstructing calculi may be asymptomatic.9

Imaging techniques are used for confirmation of the presence of urinary calculi, for determining the size and burden of the calculi, for diagnosing complications, and for following up the passage of calculi.10 Many imaging techniques are used for achieving these purposes. In the past, plain abdominal and/or pelvic X-ray radiographs were used for diagnosis. However, their use declined significantly due to the low sensitivity and specificity, missing translucent stones, and the development of new advanced diagnostic modalities.11 Intravenous urography (IVU) was also used to evaluate the degree of obstruction. However, its ability to confirm the nature of the obstructing agent was nil.12 Abdominal and pelvic ultrasonography (US) are often used in young or pregnant ladies where exposure to radiation is dangerous.13 Nowadays, computed tomography is the gold standard for diagnosis and monitoring of patients with urinary tract calculi.10

NON-CONTRAST CT

Non-contrast CT is a safe and rapid imaging technique that can be used for diagnosis of suspected renal stones. During the last few decades, non-contrast CT scan became the diagnostic technique of choice in evaluating patients with urinary calculi.14,15 It has a sensitivity of 92-95\% in detecting urinary tract calculi.14,16

Advantages of non-contrast CT scan

Along with radiopaque stones, CT scan can detect radiolucent calculi (e.g. uric acid calculi) which cannot be visualized by conventional radiography. Furthermore, CT scan can localize the site of calculi through imaging the entire kidney, ureter, and bladder.10,15 Bilateral calcified renal stones are visualized in Figure 1 in a non-contrast CT scan. Thin cuts through the abdomen and pelvis can be obtained which allows CT scan to be sensitive to visualize very small calculi down to 3 millimetres.17 Because of the availability of axial, sagittal, and coronal sections, as well as the possibility to create multiplanar reconstruction provide sufficient data about the location, size, and burden of urinary calculi.15,18 Additionally, non-contrast CT scan is a rapid accurate technique that can be performed in a few minutes (average 5 minutes) in comparison to an average of 80 minutes required to perform an intravenous urography (IVP). It does not necessitate previous prior renal function or blood tests, and it does not carry the risk of contrast reaction. The radiation does is also lesser than that required for intravenous urography (IVP), and the nature of the calculus can be determined (e.g. uric acid, struvite, and calcium oxalate) through measuring their density (Hounsfield unit (HU)).19,20 During IVP, on the other hand, all calculi appear as filling defect with no possible nature differentiation. CT scans provide an added value that it can image adjacent structures and help in detecting alternative pathology that can be the cause of pain of flank pain. CT scan has a significant value in diagnosis of urinary tract calculi in obese patients who will not be diagnosed by ultrasonography.21

Figure 1: Non-contrast CT scan of the abdomen showing bilateral small calcified renal stones.22
Disadvantage of non-contrast CT

In spite of being the gold standard for diagnosis of urinary tract calculi, CT scans still have several disadvantages. The main disadvantage is the inability to detect small stones (measuring less than 3 mm) and inability to detect certain types of stones (such as crixivan stones and pure matrix stones formed of mucoproteins and fibrin). The second disadvantage is that CT scans does not provide adequate data about the degree of obstruction of the urinary tract. It has also a limited value in diagnosis of the cause of haematuria. In cases with a paucity of retroperitoneal fat, non-contrast CT scans cannot differentiate small ureteral calculi from phleboliths due to the absence of surrounding rim sign.23

CONTRAST CT

Contrast CT scan is not commonly utilized for diagnosis of urinary tract calculi, and the non-contrast CT remains the diagnostic tool of choice.14,15 Several reasons are probably behind non-utilization of contrast CT in evaluation of patients with suspected urinary tract calculi. On the top of them are the risk of contrast reaction, the longer time consumed, and the belief that the intravenous contrast may decrease the sensitivity for calculi detection. However, no adequate well-designed studies had proved this belief.24 Dym et al, in their review, reported that IV contrast did not seem to decrease the sensitivity of urinary calculi detection. Contrast CT was highly sensitive in detecting calculi as small as 3 mm and even smaller calculi but in lower quality (Figure 2).24 In their study, contrast CT sensitivity was 95% in detecting 3 mm calculi and 99% in detecting calculi 4 mm or more. As regards the risk of contrast reaction, several studies demonstrated a very limited risk of contrast use in most of the patients.25,26

Researchers who recommend the use of contrast CT explain their recommendation by the fact that the non-contrast CT scans are unremarkable in the vast majority of patients suspected with urinary tract calculi, and an alternative pathology is often the cause of their pain. Contrast CT scans can efficiently diagnose other possible causes of flank pain such as tumours, infections, or inflammatory conditions.24,27 Furthermore, contrast CT scans has the same sensitivity of non-contrast CT in detecting signs of urinary tract obstruction (such as perinephric stranding and hydro-nephrosis, and is even more sensitive in detecting very mild obstruction.28

Advantages of using contrast-enhanced CT scans

• Same sensitivity of the intravenous contrast CT scans for detection of urinary tract calculi detection and signs of obstruction (e.g. hydronephrosis and perinephric stranding) as the non-contrast CT scans.
• Higher sensitivity than non-contrast CT in detecting very mild obstruction.
• Detection of alternative pathology as a cause of abdominal or flank pain such as tumours, infections, or inflammatory conditions in cases with normal non-contrast CT scans of the abdomen.

Disadvantages of using contrast-enhanced CT scans

• High risk for contrast reaction
• Longer time consumed than the non-contrast CT scans

CONCLUSION

In conclusion, CT scan remains the diagnostic modality of choice in evaluating patients with suspected urinary calculi. It is rapid, accurate, less hazardous, less expensive and has a high sensitivity in detection of urinary calculi as small as 3 mm. However, it cannot evaluate other probable causes of flank pain. Thus, contrast CT scans can be used in situations where clinical presentation is suspicious and the possibility of other differential diagnoses is considered. Contrast CT scans do not decrease the sensitivity of detecting urinary calculi, and they do have a higher sensitivity in detecting small grades of obstruction as well as evaluating other possible causes of flank pain such as neoplasms, infectious, or inflammatory aetiologies.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: Not required

REFERENCES

