Original Research Article

DOI: http://dx.doi.org/10.18203/2394-6040.ijcmph20164258

Neck circumference: a potential anthropometric marker for screening of hypertension in adult population of central India

Niniya J.¹*, Chaitanya R. Patil², Prakash R. Bhatkule³, Suresh N. Ughade⁴, Uday W. Narlawar⁵

Received: 24 September 2016 **Accepted:** 26 October 2016

*Correspondence:

Dr. Niniya J.,

E-mail: niniya.jayaprasad@yahoo.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Upper-body subcutaneous adipose tissue, measured by neck circumference (NC), has been positively associated with hypertension (HT). This study was conducted with the objective to correlate and evaluate NC with HT and to define critical cut-off point for screening HT in adult population of central India.

Methods: This cross sectional study was carried out in the urban filed practice area of Government Medical College Nagpur. All patients attending OPD during study period, aged >30 years after applying exclusion criteria were included in study. Sample size was calculated to be 182. The socioeconomic details were assessed using questionnaire. Anthropometric measurements and blood pressure were recorded using standard guidelines. Data was analysed using Epi Info 7 and SPSS. Unpaired t test, Pearsons correlation and finally ROC analysis was done.

Results: Out of total 206 individuals, 107 were male; majority being aged >50 years. The mean value of NC was 36.43 ± 3.23 cm and 34.84 ± 4.07 cm in hypertensive and non-hypertensives respectively and was seen significantly associated with HT (p=0.02). Positive correlation was seen between SBP and NC in male r=0.27 and in females r=0.26 (p=0.001).On applying ROC, AUC for male and female was 0.652 (p=0.007) and 0.68 (p = 0.002) respectively and the best cutoff for male was 36.5cm and female was 33.5cm with sensitivity of 74% and 72.71% respectively.

Conclusions: NC is positively correlated with hypertension. NC >36.5cm for males and >33.5cm for females was the best cut-off levels for screening for HT. NC could be a potential, inexpensive, easy screening tool for screening HT.

Keywords: Adult population, Hypertension, Neck circumference, Screening tool

INTRODUCTION

Hypertension (HT) is one of the major health and development challenges of the 21st century. Globally, nearly one billion people have high blood pressure (hypertension); of these, two-thirds are in developing countries and the problem is growing; an estimated 1.56 billion adults will be living with HT by 2025. Screening

for HT is important because it is a silent killer, signs and symptoms are not visible until end organ damage occurs.

HT is associated with a greater proportion and abnormal distribution of body fat.² The upper body distribution of fat, especially with increased visceral adipose tissue, is considered predictive of cardio metabolic conditions.³ Neck circumference (NC) has been proposed as an index for upper-body subcutaneous adipose tissue distribution

¹Junior Resident, ³Professor, ⁵Head of Department, Department of Community Medicine, Government Medical College Nagpur, Maharashtra, India

²Junior Resident, Department of Community Medicine, Indira Gandhi Government Medical College, Nagpur, Maharashtra, India

⁴Biostatistician, Department of Community Medicine, Government Medical College Nagpur, Maharashtra, India

and has been positively associated with cardio metabolic risk and HT across various ethnicities in the general population. $^{4\text{-}12}$

Due to its simplicity in measurement and assessment, NC can be used by health care workers to screen masses for HT. The benefits of using NC as anthropometric marker for HT are, when compared to measuring waist or hip circumference, there is no cultural inhibition in assessing NC in women, no restriction that it has to be taken on light clothing; no effect of full bladder or stomach and also usefulness in assessing patients on bed rest or pregnant women. Though NC is a very easy, quick and reliable tool, it is still rarely used in clinical practices to screen for HT. Therefore, this study was conducted with the objective to correlate and evaluate neck circumference with hypertension and to define critical cut off point for screening HT in adult population of central India.

METHODS

This Cross sectional study was carried out in the urban filed practice area of Government Medical College Nagpur. The centre was catering to approximately 1 lakh population. The patients attending the general OPD at the UHTC during the study period i.e. January to April 2016 were recruited for the study by simple random sampling method. The patients who were above 30 years of age were recruited for the study after obtaining an informed consent. The individuals who had visible thyroid enlargement or who gave positive history of thyroid disorders, who were severely ill and pregnant ladies were excluded from the study. The sample size for the study was calculated taking the prevalence of hypertension of 21.4% in India as stated by the reports of World Health Organisation with 90% confidence interval and an absolute precision of 5%. 13 The minimum sample to be covered was calculated to be 182. A total of 206 samples were included in the study.

The socio demographic information of subjects like age and gender was assessed using a questionnaire. Anthropometric measurements like weight and height were measured according to WHO STEPS guidelines to calculate the body mass index of the subjects. 14 Height was measured to the accuracy of 0.1cm; weight of the study subjects was measured using a digital weighing machine to the accuracy of 0.1kg; and subsequently body mass index (BMI) was calculated. NC was measured at mid-neck height, between mid-cervical spine to midanterior neck, to an accuracy of 0.1 cm, with non elastic plastic tape. In men with a laryngeal prominence (Adam's apple), it was measured just below the prominence. Blood pressure (BP) of the subjects was measured to check the presence of hypertension using mercury sphygmomanometer by auscultatory method. Three readings were taken 3 minutes apart and the average of the second & third readings was taken as the final reading. Also history of intake of medications for

hypertension was asked. HT was diagnosed as per JNC 8 criteria, systolic blood pressure (SBP) ≥140mmHg and diastolic blood pressure (DBP) ≥ 90mm Hg. ¹⁶

Statistical analysis

Data was analyzed using Epi Info version 7.1 and statistical package for social sciences version 20. Significance level was set at 5% (p<0.05). Descriptive statistics like mean, standard deviation and percentages were calculated. To test the difference between the mean BP of both groups, unpaired t test was applied. The correlation between two variables was done by Pearson's correlation. ROC (Receiver Operating Characteristic) curves were constructed thereafter. Sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy were calculated for each cutoff in the sample.

RESULTS

The age and gender wise distribution of the study subjects are shown in Table 1.

Table 1: Socio-demographic variables of then study subject.

Age group (years)	Male (%)	Female (%)
30-40	8 (7.47)	11 (11.11)
40-50	22 (20.56)	21 (21.21)
>50	77 (71.96)	67 (67.67)
Total	107 (100)	99 (100)

Of the 107 males, 77 were more than 50 years, 22 were between 40-50 years and 8 were between 30-40 years of age. Of 99 females, 67 were more than 50 years, 21 were between 40-50 years and 11 were between 30-40 years of age.

Table 2 shows the mean values of the anthropometric parameters along with their standard deviations. The mean height and weight of males were higher than that of females, whereas females had higher mean BMI $24.12\pm4.71~{\rm kg/m^2}$ in comparison to males $21.77\pm4.25{\rm kg/m^2}$. The mean NC of males and females were $37.15\pm3.59{\rm cm}$ and $34.08\pm3.20{\rm cm}$ respectively. The mean systolic and diastolic blood pressure was higher in females; $132.82\pm20.95~{\rm mmHg}$ and $84.49\pm13.04~{\rm mmHg}$ respectively in males and $135.17\pm19.83~{\rm mmHg}$ and $86.98\pm14.36~{\rm mmHg}$ respectively in female.

Figure 1 shows the mean and standard deviation of neck circumference in hypertensives and non - hypertensives and its association with hypertension. The mean value of neck circumference was 36.43 ± 3.23 cm and 34.84 ± 4.07 cm in hypertensive and non - hypertensives respectively. A statistically significant association (p value = 0.02) was seen between NC and HT when unpaired t test was applied.

Table 3 shows the Pearsons correlation coefficient between NC and other parameters like SBP, DBP and BMI for males and females. A weak positive correlation was seen between SBP and NC for both males (r = 0.27, p = 0.001) and females (r = 0.26, p = 0.001). No linear association was seen between DBP and NC in both the genders. Moderate correlation was seen between BMI and NC in males (r = 0.60) and females(r = 0.51).

Table 2: Anthropometric parameters in study subjects.

Anthropometric	Male		Female	
parameter	Mean	SD	Mean	SD
Height	163.15	8.15	150.72	6.48
Weight	58.01	12.28	54.72	6.48
Body mass index	21.77	4.25	24.12	4.71
Neck circumference	37.15	3.59	34.08	3.20
Systolic blood pressure	132.82	20.95	135.17	19.83
Diastolic blood pressure	84.49	13.04	86.98	14.36

Figure 2 and 3 shows the ROC analysis of neck circumference for hypertension in males and females respectively. The area under curve for male and female was 0.652 (p = 0.007) and 0.68 (p = 0.002) respectively. On applying ROC analysis it was found out that the best cut-off for male is 36.5cm and for female is 33.5cm.

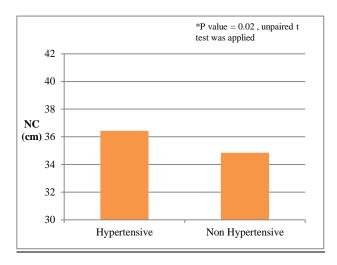


Figure 1: Mean of neck circumference (NC) and its association* with hypertension.

Table 3: Pearson's correlation coefficient between neck circumference and other parameters for males and females.

Parameters	Male		Female		Overall	
	r	P value	r	P value	r	P value
Systolic blood pressure	0.274	0.001,HS	0.265	0.001,HS	0.221	0.001,HS
Diastolic blood pressure	0.220	0.02,S	0.156	0.12,NS	0.133	0.056,NS
Body mass index	0.606	0.001,HS	0.511	0.001,HS	0.386	0.001,HS

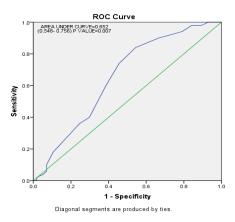


Figure 3: ROC analysis of neck circumference for hypertension in males.

Table 4 shows the gender-wise cut-off values of NC for screening HT. Using the cut-off based on ROC, 36.5cm for male and 33.5 cm for female, further evaluation was

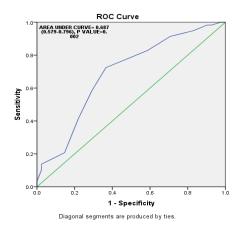


Figure 4: ROC analysis of neck circumference for hypertension in females.

done to find their sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy which are depicted in Table 4.

Table 4: Gender-wise cut off values for neck circumference for evaluating hypertension.

Gender	Neck circumference cut off levels	Sensitivity	Specificity	Positive predictive value	Negative predictive value	Diagnostic accuracy
Male	36.5 cm	74	54.39	58.73	70.45	63.55
Female	33.5 cm	72.71	63.41	73.68	61.9	68.69

DISCUSSION

The present study, carried out among adult population of central India, is one of its kinds, which was conducted with the hypothesis that neck circumference could be a useful tool to screen for hypertension. This study showed that NC was significantly associated with HT. A weak positive correlation (r=0.274 in males and r= 0.265 in female) was found between NC and SBP in both the genders, whereas no correlation was found between DBP and NC. Also a moderate correlation (r= 0.606 in males and r= 0.511 females) was seen between NC and BMI, a common measure of obesity which is also a proven risk factor for HT.

In a study conducted by Ben- Noun et al in 2004, a significant correlation was found between SBP and NC (men, r = 0.40; women, r = 0.58; each, P = 0.0001) and between DBP and NC (men, r = 0.42; women, r = 0.53; P=0.0001). ¹⁷ Ben- Noun et al also showed a positive correlation between changes in NC and changes in BP (r= 0.54 in males; r = 0.56 in females, each P < 0.0001). The findings of the present study are in concordance with other studies conducted by Joshipura K et al, Alfie J et al and Ben-Noun et al. 4,6,8 Whereas in the study conducted by Liang J et al, NC was associated with SBP and DBP in univariate analysis, but after adjusting for BMI and WC, the association was weak.¹⁸ A case control study conducted by Kuciene R et al amongst adolescents in Lithuania also showed that NC is associated with HTN. 19 The studies conducted by various authors have also shown positive correlation between NC and BMI, which is similar to the finding of the present study. 20,21

Upper body fat distribution is related to increased cardiovascular disease risk.²² The association between neck fat and metabolic syndrome and its components may be attributed to an excess release of free fatty acids into plasma from the upper body subcutaneous fat which is found to be larger in size than that from lower-body subcutaneous fat.^{12,23} This further strengthens the relevance of measuring upper-body subcutaneous adipose tissue depots, by measuring NC, to identify cardiovascular risk factors like hypertension and obesity.

In the present study, ROC analysis was carried out to evaluate NC as a screening tool for hypertension; AUC was 0.652 (p = 0.007) for male and 0.68 (p = 0.002) for female. The cut of values of neck circumference was derived to be 36.5cm for male and 33.5 cm for female. The sensitivity, specificity and diagnostic accuracy of cut

off value for male was 74%, 54.39% and 63.55% respectively and 72.71%, 63.41 and 68.69%. No studies have estimated the cut-off values of NC for screening HT. Various studies have estimated the cut of values of NC for assessing obesity and overweight which is also a risk factor for hypertension. Ben- Noun L et al in his study in Israel found that NC >37 cm for men and >34 cm for women were the best cut-off levels for determining the subjects with BMI >25.0 0 kg/m² using the ROC analysis where sensitivity, specificity and diagnostic accuracy was 98%, 89% and 94% respectively for men, and 100%, 98% and 99% respectively for women.⁷ The cut-offs derived in this study is almost similar to the study by Ben- Noun L et al, but having lower sensitivity, specificity and diagnostic accuracy. Kumar S et al in his ROC analysis showed that AUC for NC and BMI >25 kg/m² was 0.89 for men and 0.91 for women, respectively; cut off value for $NC \ge 38$ cm for men and \geq 34.7 cm for women were seen to be the best cut-off points for determining subjects with overweight.²⁰ NC >36cm for males and >32cm for females was the best cut-off levels for determining the overweight/obese subjects in the study conducted by Aswathappa J et al.²¹ The slight variations in the cut off could be attributed to the difference in ethnicity and geographic distribution of the study population of the different studies.

The present study has some selection bias as the subjects were randomly selected from the patients attending the OPD of UHTC. Also due to the fact that this was a OPD based study, there are chances that the patients could already have multiple risk factors for hypertension. So further community based study is indicated to minimize this bias. Though utmost care was taken while collecting data, this study would not be free from instrumental bias and measurement bias occurred during measuring NC and BP.

CONCLUSION

This study has shown correlation between HTN and NC and evaluated the use of NC as a potential anthropometric marker and derived the cut off values that can be used for screening hypertension in the adult population of central India. The correlation seen in this study was of less magnitude, but a larger study with more representative samples from the community will improve the strength of correlation. Measuring neck circumference is less cumbersome, more convenient, more feasible, easy to understand and socially acceptable. Social workers can measure NC to screen masses for hypertension with

simple measuring tape with only limited training. Further studies should be conducted in this context in different settings and population and if consistent results are achieved, neck circumference should be included in guidelines and recommended for assessing hypertension in the population.

ACKNOWLEDGEMENTS

Authors would like to acknowledge the support of the staff of the department and UHTC of GMC Nagpur. We also thank the participants for the study for their participation and contribution.

Funding: No funding sources Conflict of interest: None declared

Ethical approval: The study was approved by the

Institutional Ethics Committee

REFERENCES

- Hypertension fact sheet, WHO Regional Office for South East Asia [Internet]. Available from http://www.searo.who.int/entity/noncommunicable_ diseases/media/non_communicable_diseases_hypert ension_fs.pdf.
- 2. Wilson PW, D'Agostino RB, Sullivan L, Parise H, Kannel WB. Overweight and obesity as determinants of cardiovascular risk. The Framingham experience. Arch Intern Med. 2002;162:1867-72.
- 3. Kissebah AH, Peiris AN. Biology of regional body fat distribution: relationship to non-insulindependent diabetes mellitus. Diabetes/ Metabolism Reviews. 1989;5(2):83-109.
- Joshipura K, Muñoz-Torres F, Vergara J, Palacios C, Pérez CM. Neck Circumference May Be a Better Alternative to Standard Anthropometric Measures. Journal of Diabetes Research 2016. Avaialable from:http://dx.doi.org/10.1155/2016/6058916.
- 5. Zhou JY, Ge H, Zhu MF, Wang LJ, Chen L, Tan YZ, et al. Neck circumference as an independent predictive contributor to cardio-metabolic syndrome. Cardiovasc Diabetol. 2013;12:76.
- 6. Alfie J, Díaz M, Páez O, Cufaro P, Rodríguez P, Fábregues G, Magni R, Nucci S, Rodríguez M, Marin Mj. Relationship Between Neck Circumference And Hypertension In The National Hypertension Registry (The Renata Study) Revista Argentina De Cardiología 2012;80(4):275-79.
- 7. Ben-Noun L, Sohar E, Laor A. Neck circumference as a simple screening measure for identifying overweight and obese patients. Obes Res. 2001:9:470-7.
- 8. Ben-Noun LL, Laor A. Relationship between changes in neck circumference and cardiovascular risk factors. Exp Clin Cardiol. 2006;11:14-20.
- 9. Ben-Noun L, Laor A. Relationship of neck circumference to cardiovascular risk factors. Obes Res. 2003;11:226-31.

- Kumar S, Gupta A, Jain S. Neck circumference as a predictor of obesity and overweight in rural central India. International Journal of Medicine and Public health. 2012;2(1):62-6.
- 11. Preis SR, Pencina MJ, D'Agostino RB Sr, Meigs JB, Vasan RS, Fox CS. Neck circumference and the development of cardiovascular disease risk factors in the Framingham Heart Study. Diabetes Care. 2013;36:e3.
- 12. Preis SR, Massaro JM, Hoffmann U, D'Agostino RB Sr, Levy D, Robins SJ, et al. Neck circumference as a novel measure of cardiometabolic risk: the Framingham Heart study. J Clin Endocrinol Metab. 2010;95:3701-10.
- 13. World Health Organization (WHO). Non communicable Diseases Country Profiles [Internet] 2014. Available from: http://www.who.int/nmh/countries/ben_en.pdf?ua=1.
- 14. World Health Organization (WHO). WHO STEPS Surveillance. Part 3: Training and Practical Guides. Section 3: Guide to Physical Measurements (Step 2) Last Updated: 12 December 2008. [Internet]. Avaialabe from: http://www.who.int/chp/steps/Part3 Section3.pdf
- 15. Practice Guidelines: New AHA Recommendations for Blood Pressure Measurement American Family Physician [Internet]. Available from: http://www.aafp.org/afp/2005/1001/p1391.html
- James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, et al. 2014 Evidence-Based Guideline for the Management of High Blood Pressure in Adults Report From the Panel Members Appointed to the Eighth Joint National Committee (JNC 8). JAMA 2013. doi:10.1001/jama.2013.284427.
- 17. Ben-Noun LL, Laor A. Relationship between changes in neck circumference and changes in blood pressure. Am J Hypertens. 2004;17:409-14.
- 18. Liang J, Wang Y, Dou L, Li H, Liu X, Qiu Q, Qi L. Neck circumference and prehypertension: the cardiometabolic risk in Chinese study. J Hypertension. 2015;33:275-8.
- Kuciene R, Dulskiene V, Medzioniene J. Association of neck circumference and high blood pressure in children and adolescents: a case-control study. BMC Pediatrics. 2015;15:127. DOI 10.1186/s12887-015-0444-2
- 20. Kumar S, Gupta A, Jain A. Neck circumference as a predictor of obesity and overweight in rural central India 2012. Int J Med and Public health. 2012;2(1):62-6.
- 21. Aswathappa J, Garg S, Kutty K, Shankar V. Utility of neck circumference, a simple and novel measure as anthropometric marker of obesity in adults. World journal of pharmacy and pharmaceutical sciences. 2014;3(3):1618-29.
- 22. Sjo Strom CD, Lissner L, Sjo Strom L. Relationship between changes in bodycomposition and changes in cardiovascular risk factors: The SOS intervention

- study:Swedish obese subjects. Obes Res. 1997;5:519-30.
- 23. Jensen MD. Lipolysis: contribution from regional fat. Annu Rev Nutr. 1997;17:127-39.

Cite this article as: Niniya J, Patil CR, Bhatkule PR, Ughade SN, Narlawar UW. Neck circumference: a potential anthropometric marker for screening of hypertension in adult population of central India. Int J Community Med Public Health 2016;3:3374-9.