Original Research Article

DOI: https://dx.doi.org/10.18203/2394-6040.ijcmph20220669

Tuberculosis prevalence relation to COVID-19 mortality in malaria free countries

Tareef Fadhil Raham*

Al-Alwiyia pediatric Teaching Hospital, MOH- Iraq

Received: 07 January 2022 Accepted: 14 February 2022

*Correspondence: Dr. Tareef Fadhil Raham, E-mail: tareeffadhil@yahoo.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Both malaria and latent tuberculosis (TB) are possible factors related to decreased COVID-19 mortality. Malaria endemicity variable is a possible confounder when conducting a study on the correlation of latent TB prevalence to COVID-19 mortality. Studies regarding latent TB prevalence" according to different studies" did not adjust malaria endemicity as a possible confounder. Many malaria-endemic countries are high TB prevalent. Malaria-free countries could be: high, moderate, or low in TB prevalence. The main aim of this study is to look for the influence of TB prevalence on COVID-19 mortality. TB prevalence reflects latent TB prevalence in the absence of malaria endemicity as a possible confounding factor in TB studies.

Methods: The total chosen countries were sixty-nine non-malaria endemic countries. Countries were classified according to TB prevalence groups into low, moderate, and high prevalent groups. Covid-19 deaths/Million (M) inhabitant were taken as reported on September 2, 2020. "Kendall's-τ Correlation Coefficient", "Kruskal-Wall is test, and Mann-Whitney test were used in statistical analyses.

Results: We found inverse relationships between TB prevalence and COVID-19 deaths/ (M) inhabitant and a highly positive significant correlation coefficient was reported (0.008) in Kendall's-τ correlation coefficient test. Kruskal-Wall is test showed a significant relationship within studied groups. Furthermore, the low TB prevalent group had significant reverse associations with both high and moderate TB prevalent groups in the Mann-Whitney test.

Conclusions: In the absence of possible malaria confounding, TB prevalence in malaria free countries is inversely related to COVID-19 mortality in a highly significant association.

Keywords: COVID-19, Malaria, SARS-Cov2, TB, Trained immunity

INTRODUCTION

Microorganisms may modulate hosts' protective heterologous cross- immunological reactions, which can last for a long time. This cross-protection can be achieved through inducing training of innate immune cells. This promotes host resistance against a wide spectrum of pathogens. Latent TB: Approximately 2–3 billion people in the world are latently infected with Mycobacterium tuberculosis. The lifetime risk of reactivation of TB is estimated to be around 5–10% of screen positive

persons.^{3,4} TB prevalence in countries reflects the latent TB prevalence as far as TB prevalence constitutes approximately one-tenth or one-twentieth of TB prevalence. The incubation period for TB infection is very rarely more than 2 years after infection. On the other hand, if a person crosses these 2 years without showing manifestation of the disease, immunity "generated by latent TB" shows long-time positivity making a person with previous latent TB immune from getting the disease. This immunity can be tested by specific immunologic tests that did not differentiate past infections from recent

ones since it did not indicate the presence of live bacteria. This TB immunoreactivity can persist whether a patient is treated by curative treatment or not.⁵⁻⁸

Studies show that latent TB infection prevalence is associated with a decrease in COVID-19 mortality. These studies suggested heterogeneous immune response to COX-COV2 viral infection. Despite this significant association, some countries are hugely disparate case fatality rates among low% LTBI countries. Also, disparity exists in case fatality rates among high %LTBI countries. This disparity existed despite that these studies have suggested a role of BCG vaccination as far as BCG is a form of mycobacterial species, has heterogeneous immune effects, and was suggested to have an added effect to latent TB effect. These studies did not consider the possible role of malaria in explaining these disparities. We consider malaria's role in this study and restrict the study of TB prevalence to malaria-free countries.

Malaria

Early in this pandemic, malaria-endemic areas were suggested to have a low risk for catching COVID-19. 13-17 Past malaria exposure was suggested to attenuate monocyte-associated immunopathology induced by SARS-CoV-2 through inducing epigenetic reprogramming of monocytes/macrophages toward a regulatory phenotype that mitigated inflammatory responses.

In the same context, another 2 studies founded a significant correlation between malaria endemicity and COVID-19 mortality. 19,20

METHODS

Patients or the public were not involved in this work, given that we used related publically published morbidity and mortality statistics. Countries that have achieved at least 3 consecutive years of zero indigenous cases of malaria up to 2019 were selected. The total chosen countries were 69, as shown in appendix A. These countries may also eligible to apply for a WHO certification of malaria-free status. Free-malaria countries listed in the supplementary list by WHO were included in our study sample. The supplementary list contains countries where malaria never existed or disappeared years or decades ago and where full WHO certification of malaria elimination is not needed. WHO lists dates of notification in this list rather than elimination dates? We chose the most recent updates published in the following WHO online publications.

Countries and territories certified malaria-free by WHO

Last update: 22 May 2019

WHO. Countries and territories certified malaria-free by WHO.

World Health Organization. (1968). Supplementary list of malaria-free area.

Further references are listed in appendix (C) within the supplementary file attached to this manuscript

Countries and territories with less than 1 million populations were excluded. Appendix (D)

Data for TB prevalence are publically available (Appendix E).

Data for COVID-19 mortality are available.

COVID-19 worldometer

TB prevalence was taking from available data for up to 10 years ago (2011-2017) we took the highest available figure. COVID-19 deaths/million(M) inhabitant reported as it was on September 2, 2020.

Data regarding to TB Prevalence groups are classified for statistical purposes as: (low, moderate, and high where (Low: \leq 15), (Moderate: 16-49) and (High \geq 50) (Table 1).

Total of chosen countries were 69, distributed among that categories status as shown in appendix A.

Following methods were used:

"Kendall's-\(\tau\) Correlation Coefficient", "Kruskal-Wall is test, and Mann-Whitney test" Also we used "Stem-Leaf" plot for exploring data behavior concerning COVID-19 mortality/ (M) inhabitant in relation to different TB prevalence groups.

All statistical operations were performed through using the ready-made statistical package SPSS, ver. 22.

RESULTS

Tables 1 represents "Kendall's- τ Correlation Coefficient" and P-values for studied the amount and the direction concerning relationships among the studied markers.

Results showed there were strong relationships among studied marker (Covid-19 Deaths/M and TB prevalence) as the number of deaths increased with lowering the prevalence of tuberculosis and too highly positive significant correlation coefficient was reported (p value = 0.008). This indicates that research hypothesis is fulfilled in general with a highly significant p value.

Table 2 represents summary statistics of (COVID-19 deaths/M) among studied groups. These statistics include 5% trimmed mean, median, minimum, maximum readings, range, and interquartile range). Maximum figures of mortalities were among low TB prevalence group and minimum within high TB prevalence group. Furthermore, the 5% trimmed mean is shown to be higher

within low TB prevalence group compared to moderate and high TB prevalence groups. Kruskal-Wallis Test showed a p-value of 0.021 which is less than the significance level of 0.05, hence we rejected the null hypothesis and conclude that the medians are not all equal (Table 3). As shown in table 3, comparisons significance among TB prevalence categories using Mann-Whitney test shows significant relations between low TB prevalence group with both groups high TB prevalence and moderate TB prevalence p.

Table 1: "Kendall's-τ correlation coefficient" for studied the amount and the direction relationships among the studied markers.

Markers	Correlation Coeff. and P-value	TB prevalence
Covid-19	Correlation Coefficient	-0.251 **
Deaths/M	Sig. (2-tailed)	0.008
2/August	No.	69

^{**} Correlation is significant at the 0 .01 level (2-tailed).

Table 2: Descriptive statistics of (COVID-19 deaths/m on September 2, 2020) and testing of all probable combinations of tb prevalence categories.

Statistics	TB prevalence categories		
Statistics	Low	Moderate	High
5% Trimmed Mean	235	82	68
Median	110	47	60
Minimum	6	5	0
Maximum	853	591	250
Range	847	586	250
Interquartile Range	445	168	97
Kruskal-Wallis Test	Chi-Square = 7.740		
C.S.	P=0.02	1 (S)	
P-value			

Table 3: Comparisons significance according to Mann-Whitney test.

Mann-Whitney test	
Low X moderate	Z=-2.276; p=0.023 (S)
Low X high	Z=-2.418; p=0.016 (S)
Moderate X high	Z=-0.437; p=0.662 (NS)

S: Sig. at p<0.05; NS: non sig. at p>0.05.

The shape of the distribution. of the recorded COVID-19 deaths within TB prevalence groups is well shown in stem-leaf graphical plots (Figure 1). This illustration shows clearly the how COVID-19 deaths were highest within the low TB prevalence group and lowest within the highest TB prevalence group. In the moderate TB prevalence group. The mortality was between the other 2 groups.

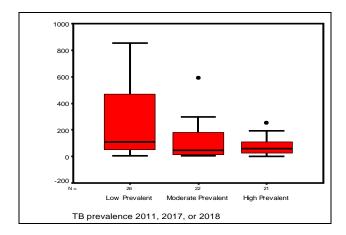


Figure 1: Stem-leaf plots of (COVID-19 deaths/M) according to TB prevalence categories.

DISCUSSION

A confounding factor (third variable) may mask an actual association or falsely demonstrate an apparent association between the study variables where no real association between them exists. If confounding factors are not measured and considered, bias may result in the conclusion of the stud. Confounding occurs when a measure designed to assess a particular construct inadvertently measures something else as well.²²

The confounding factor can interfere with the real effect. For this reason, the etiological importance of a variable needs to be prevented or removed as much as possible. Confounding may be prevented by the use of randomization, restriction, or matching.²³ The term restriction is used when a researcher chooses only one variation of a participant to restrict the possibility of including a confounding variable. As far as malaria is a possible confounding factor suggested to create a cross heterogeneous effect towards COX-Cov2, we designed this study to exclude this factor by restricting the study sample to malaria-free countries. Literatures raise the question of unknown contribution factors regarding COVID-19 mortality variances.²⁴ Some of literatures raise the possibility of malaria as one factor in explaining the variances in COVID-19 mortalities. 13-20 One of these studies founded that malaria has an added effect on TB prevalence effect in decreasing the COVID-19 deaths in malaria-endemic areas. 19 Countries are classified as either malaria-free or malaria-endemic countries. All malariafree countries have a certain TB prevalence. In general, countries might be classified as low, intermediate, and high TB incidence countries. Malaria endemic countries are usually highly endemic in TB. This might lead to confounding when testing relation of TB or malaria against COVID-19 mortality. Previous studies testing TB influence on COVID-19 mortality fail to control this factor.25,26

In this study by using Kendall's-τ correlation coefficient test, there was a high reverse-directional significant

correlation between COVID-19 mortality rates and TB prevalence (in absence of suggested confounded factor of malaria endemicity) with reported p-value (0.008) (Table 2).²⁷

Kendall's τ has been classically used to test the significance of cross-correlation between two variables when their distributions significantly deviate from the normal distribution. In that case, a significance test based on the distribution-free τ , which is a function of the ranks of the variates rather than their actual values, offers more power than other parametric tests.

The finding in this study of TB prevalence influence on COVID-19 mortality in malaria-free countries is strongly in agreement with a previous study in malaria-endemic countries.19 Furthermore, it consolidates other studies on the relation of latent TB to covid-19 mortality. ¹⁰⁻¹⁴

A second test conducted in this study was the Kruskal-Wallis Test. It is a non-parametric method used for testing whether samples originate from the same distribution or not by determining whether the medians of two or more groups are different.^{29,30} It was conducted among different TB prevalence groups. It showed that the Chi-Square result equals 7.740 with p-value equals to 0.021 (S)These results signify that there are differences among the groups, but as Kruskal-Wallis Test is an omnibus test statistic and doesn't tell which group is different from other groups. It is used for comparing two or more independent samples of equal or different sample sizes. The Kruskal-Wall is test is a rank-based test that is similar to the Mann-Whitney U test but can be applied to one-way data with more than two groups. It is a nonparametric alternative to the one-way ANOVA test, which extends the two-samples Wilcoxon test.

However, like most non-parametric tests, the Kruskal-Wall is test is not as powerful as the ANOVA but, assumptions of one-way ANOVA are not met in our sample.

A Mann-Whitney U test (another non-parametric test) was used to compare the differences between two independent samples as far as the sample distributions are not normally distributed as shown before.

It showed that the low TB prevalent group when tested against groups moderately TB prevalent and highly prevalent group show significant association with decreased mortality from covid-19 (Table 3).

The non-significant association between moderate and high TB prevalent groups (Table 3) needs further consideration. The test fails to find a significant association due to possible existing confounding factors. A possible one is malaria elimination date since recently faster progress achieved in malaria elimination, than in the TB control in many countries. According to WHO,

the elimination net is widening.³² Furthermore, more countries are moving towards zero indigenous cases: The number of countries with fewer than 100 indigenous cases were 17, 25, and 27 in 2010, 2017, and,2018 respectively, which is a strong indicator that elimination is within reach.³¹

Despite other significant associations, some countries are obviously disparate fatality rates / M inhabitant among low % TB prevalence countries. Also, a disparity exists in fatality rates among high % TB prevalence countries. We suggest other possible confounding factors in addition to malaria residual immunity already mentioned include but not restrict to BCG policy of country and BCG coverage, other mycobacterial cross-reaction or effects by other vaccines population size measures taken, habits, some LAVs which have induced a broad, nonspecific, protection against unrelated pathogens and decreased mortality from conditions other than the targeted infectious diseases. Furthermore, this study was done without any regard for income, healthcare facilities.

Controlled clinical studies need to be conducted before further considering reviewing global strategies for prevention and treatment of TB and malaria. According to global strategy in the treatment of TB, the main goal is to treat the active cases in areas with a high incidence of TB, but in areas with a low incidence of TB, the goal also includes prophylactic treatment for LTBI.³³

Whoever, in recent years, studies have gradually narrowed down to the preventive treatment of LTBI for high-risk target groups. Targeted TB testing and treatment programs in USA and many European countries conducted among high-risk groups. 34,35 It was questionable that chasing after latent TB infection treatment a time before. If prophylaxis is provided for all LTBI patients, it will result in an enormous waste of resources and increase the likelihood of anti-TB drug resistance. 33 Added to that we raised the possible role of latent TB on decreasing COVID-19 mortality. 36

TB prevalence in this study was taken as the highest available figure for up to 10 years ago (since 2011 outward) as far as the immunity created by latent or active TB infection last for a long time. The major dilemma is that there is no test to assure that every person diagnosed with immune-reaction to latent TB treatment can be guaranteed free from the active form of infection, although it has been agreed that reactivation is unlikely after 2 years.³⁷

We considered 10 years the least time for immunereaction to wane as far as it is well known that a related Mycobacterium which is Mycobacterium Bovis (BCG), waned by at least by 10 years. A longer time for immune reaction time after natural infection is possible, but the exact time for waning such immunity is unknown yet.

CONCLUSION

TB prevalence is inversely related to COVID-19 mortality in high significance association, Low TB prevalence countries have significantly different statistical COVID-19 mortalities in relation to both moderate and high TB prevalent countries.

Recommendations

Clinical trials are recommended any updating for global strategies for prevention and treatment of TB and malaria.

ACKNOWLEDGEMENTS

Authors is grateful to Emeritus Professor Abdulkhaleq Abduljabbar Ali Ghalib Al-Naqeeb, Ph.D. in the Philosophy of Statistical Sciences at the Medical & Health Technology college, Baghdad-Iraq, for his assistance and support in data analysis, interpretations of finding results and revision the statistical results.

Funding: No funding sources Conflict of interest: None declared

Ethical approval: The study was approved by the

Institutional Ethics Committee

REFERENCES

- 1. Netea MG, Quintin J, van der Meer JW. Trained immunity: a memory for innate host defense. Cell Host Microbe. 2011 May 19; 9(5):355-61.
- World Health Organization. Global Tuberculosis Report 2015. Geneva: WHO, 2015. Available at http://www.who.int/tb/publications/global_report/e. Accessed on 23 November 2015.
- 3. Targeted tuberculin testing and treatment of latent tuberculosis infection. American Thoracic Society. MMWR Recomm Rep. 2000;49(6):1-51.
- 4. Comstock GW, Livesay VT, Woolpert SF. The prognosis of a positive tuberculin reaction in childhood and adolescence. Am J Epidemiol. 1974;99:131-8.
- WHO Latent tuberculosis infection: updated and consolidated guidelines for programmatic management. 2018. Available at https://apps.who.int/iris/bitstream/handle. Accessed on 12 January 2021.
- 6. Biraro IA, Kimuda S, Egesa M, Cose S, Webb EL, Joloba M, et al. The Use of interferon gamma inducible protein 10 as a potential biomarker in the diagnosis of latent tuberculosis infection in Uganda. PLoS One. 2016;11(1):e0146098.
- 7. Marcel A, Paul H, Lalita R. Revisiting the timetable of tuberculosis. BMJ. 2020;27:362:
- 8. Marcel BA, Paul H, Lalita. Is mycobacterium tuberculosis infection life long?. BMJ. 2020;367:15770.

- 9. Crevel R, Ottenhoff THM, Jos WM. Innate Immunity to Mycobacterium tuberculosis. Clinical Microbiology Reviews. 2002;15(2):294-309.
- 10. Raham TF. TB prevalence influence on covid-19 mortality. Int J Psychosocial Rehab. 2020;24(10):3679-90.
- 11. Singh S, Maurya RP, Singh RK. 'Trained immunity' from Mycobacterium spp. exposure or BCG vaccination and COVID-19 outcomes. Medrxiv. 2020: 10.1101/2020.07.11.20151308.
- 12. Takahashi H. Role of latent tuberculosis infections in reduced COVID-19 mortality: evidence from an instrumental variable method analysis. Medical Hypotheses. 2020:144110214.
- 13. Banerjee S, Saha A. Finding tentative causes for the reduced impact of Covid-19 on the health systems of poorer and developing nations: an ecological study of the effect of demographic, climatological and health related factors on the global spread of Covid-19. Medrxiv. 2020.
- 14. Singh S. BCG vaccines may not reduce covid-19 mortality rates. Medrxiv. 2020.
- 15. Gomes LR, Martins YC, Ferreira-da-Cruz MF, Ribeiro CT. Autoimmunity, phospholipid-reacting antibodies and malaria immunity. Lupus. 2014;23(12):1295-8.
- 16. Parodi A, Cozzani E. Coronavirus disease 2019 (COVID 19) and Malaria: Have anti glycoprotein antibodies a role? Med Hypotheses. 2020;143:110036.
- 17. Napoli PE, Nioi M. Global spread of coronavirus disease 2019 and malaria: an epidemiological paradox in the early stage of a pandemic. J Clin Med. 2020;9(4):1138.
- 18. Guha R, Mathioudaki A, Doumbo S, Doumtabe D, Skinner J, Plasmodium falciparum malaria drives epigenetic reprogramming of human monocytes toward a regulatory phenotype BioRxiv. 2020;10:21-34.
- 19. Raham TF. Influence of malaria endemicity and tuberculosis prevalence on COVID-19 mortality. Public Health. 2021;194:33-5.
- Raham TF. Malaria elimination date correlation to COVID-19 mortality: New Evidence (November 21, 2020). Available at SSRN: https://ssrn.com/ abstract=3735069 or http://dx.doi.org/10.2139/ssrn.3 735069.
- 21. WHO. Countries and territories certified malariafree by WHO. Available at WHO Countries and territories certified malaria-free by WHO. Accessed on 21 April 2021.
- 22. Skelly AC, Dettori JR, Brodt ED. Assessing bias: the importance of considering confounding. Evid Based Spine Care J. 2012;3(1):9-12.
- 23. Jager KJ, Zoccali C, MacLeod A, Dekker FW. Confounding: What it is and how to deal with it. Kidney Int. 2008;73(3):256-60.
- 24. Sorci G, Faivre B, Morand S. Explaining amongcountry variation in COVID-19 case fatality rate. Sci Rep. 2020;10:18909

- 25. Bhutta ZA, Sommerfeld J, Lassi ZS, Salam RA, Das JK. Global burden, distribution, and interventions for infectious diseases of poverty. Infect Dis Poverty. 2014;3(1):1.
- 26. Tuberculosis and malaria in the age of COVID-19. The Lancet Infectious Diseases. 2021;21(1):1-148.
- 27. Hamed KH. The distribution of Kendall's tau for testing the significance of cross-correlation in persistent data. Hydrol Sci J. 2011;56(5):841-53.
- 28. Al-Momen H, Raham TF, Daher AM. Tuberculosis versus COVID-19 mortality: a new evidence. Maced J Med Sci. 2020;24:33-9.
- 29. Corder, Gregory W, Dale FI. (2009). Nonparametric Statistics for Non-Statisticians. Hoboken: John Wiley and Sons. Pp 99-105.
- 30. Wallis K. Use of ranks in one-criterion variance analysis. J Am Statistical Association. 1952;47(260):583-621.
- 31. World malaria report 2019. Geneva: World Health Organization; 2019.
- 32. Jomana A, Ashraf K, Khalid K. Could "trained immunity" be induced by live attenuated vaccines protect against COVID-19? Review of available evidence. J Infect Developing Countries. 2020;14:957-62.
- 33. Ai JW, Ruan QL, Liu QH, Zhang WH. Updates on the risk factors for latent tuberculosis reactivation

- and their managements. Emerg Microbes Infect. 2016;5(2):e10.
- CDC. Deciding When to Treat Latent TB Infection. Available at https://www.cdc.gov/tb/topic/treatment/decideltbi.htm. Accessed on 8 September 2020.
- 35. European Centre for Disease Prevention and Control. Management of latent tuberculosis infection. Available at https://www.ecdc.europa.eu/en/tuberculosis/prevention-and-control/management-latent-tuberculosis-infection. Accessed on 8 November 2020.
- 36. McNeil, Donald G. Latent' tuberculosis? It's not that common, experts find. The New York Times.
- 37. Abubakar I, Pimpin L, Ariti C, Beynon R, Mangtani P, Sterne JA, et al. Systematic review and meta-analysis of the current evidence on the duration of protection by bacillus Calmette-Guérin vaccination against tuberculosis. Health Technol Assess. 2013;17(37):371-2.

Cite this article as: Raham TF. Tuberculosis prevalence relation to COVID-19 mortality in malaria free countries. Int J Community Med Public Health 2022;9:1141-9.

APPENDIX A

TB prevalence surveyed versus COVID-19 deaths/M inhabitant registered on September 2020.

Country	Covid-19 deaths/M September /2/ 2020	TB prevalence
High TB prevalent group (high: ≥ 50)		·
Lesotho	0	788
Qatar	71	760
Albania	101	550
Jordan	1	530
Greece	26	490
Mongolia	111	428
Republic of Moldova	250	152
Kyrgyzstan Kyrgyz Republic	162	144
United Arab Emirates	39	140
Morocco	31	107
Ukraine	60	91
Kazakhstan	84	89
Romania	192	84
Russian Federation	119	80
Uzbekistan	10	79
Algeria	34	75
Turkmenistan	0	70
Sri Lanka	144	65
New Zealand	4	65
Lithuania	32	56
Belarus	72	55
Moderate TB Prevalent Group (Moderate: 16-4		33
Singapore Singapore	5	47
Iraq	182	43
Paraguay	46	43
Armenia	297	41
Libya	35	40
Bosnia and Herzegovina	189	37
Tunisia	7	35
Uruguay	13	33
Latvia	18	29
Argentina	193	27
Portugal	179	24
Kuwait	125	23
Mauritius	8	22
Trinidad and Tobago	18	21
Poland	54	19
Chile	591	18
Estonia	48	18
Czechia	40	18
Bahrain	111	18
Japan	10	17
Serbia	82	17
Low TB Prevalent Group (Low: ≤15)	02	1 /
Lebanon	26	13
Republic of North Macedonia	290	13
Spain	622	12
UK and Northern Ireland	611	10
Belgium	853	9
Hungary	64	9
Trungary	U 1	7

Continued.

Country	Covid-19 deaths/M September /2/ 2020	TB prevalence
France (Metropolitan)	469	9
Sweden	575	9
Austria	81	8
Germany	112	8
Israel	104	8
Croatia	46	8
Switzerland	232	7
Italy	587	7
Ireland	359	7
United States of America	567	7
Cuba	8	7
Slovakia	6	7
Slovenia	64	7
Australia	26	7
Denmark	108	6
Finland	61	6
Canada	242	6
Norway	49	6
Netherlands	363	6
Cyprus	17	6
Jamaica	7	5

TB prevalent groups: (low: \leq 15), (moderate: 16-49), and (high: \geq 50).

APPENDIX B

Category	References
Data for COVID-19 deaths/M as it is in September 2 2020	Worldmeter. Coronavirus. Accessed: 9 February 2022. https://www.worldometers.info/coronavirus/?

APPENDIX C

	References
	CDC malaria information and prophylaxis, by country [E]. available at:
	https://www.cdc.gov/malaria/travelers/country_table/e.html. Accessed on 25 December 2021.
	World malaria report 2019. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO. Available at: file:///C:/Users/zz/Downloads/9789241565721-eng.pdf. Accessed on 25 December 2021.
	The World Bank. Data. Incidence of malaria. Available at: https://data.worldbank.org/indicator/SH.MLR.INCD.P3. Accessed on 25 December 2021.
	WHO. Global Health Observatory data repository. By Category. Malaria. Cases. Available at: https://apps.who.int/gho/data/node.main.MALARIAINCIDENCE?lang=en. Accessed on 25 December 2021.
	Roser M, Ritchie H. Our World in Datta. Malaria. Available at: https://ourworldindata.org/malaria. Accessed on 25 December 2021.
Malaria elimination references	Constantinou K. Anopheles (malaria) eradication in Cyprus. Parassitologia. 1998;40(1-2):131-5.
Telefelices	Bulletin of the World Health Organization. 2008;86(2):81-160.
	Chapter 5. Elimination of malaria in: World Malaria Report 2009: 55.
	Countries and territories certified malaria-free by WHO, WHO Countries and territories certified malaria-free by WHO.
	World Health Organization. Supplementary list of malaria-free area = liste supplémentaire des zones sans paludisme. Weekly Epidemiological Record. 1968;43(5):82.
	World Malaria Report 2012 (who.int)
	WHO (World Health Organization). 2016a. "Eliminating Malaria." WHO, Geneva. Available at: http://www.who.int/malaria/publications/atoz/eliminating malaria/en/.
	WHO. Malaria. Certification process. Available at:
	https://www.who.int/malaria/areas/elimination/certification/en/

APPENDIX D

Countries	
Excluded countries and territories with less than 1 million populations	Montenegro, Seychelles, Iceland, La Réunion, Malta, Monaco, San Marino, Antigua and Barbuda, Luxembourg, Bahamas, Barbados, Dominica, Fiji, Nauru, Grenada, Tuvalu, Tonga, Samoa, Palau, Niue, Saint Kitts and Nevis, Saint Lucia, Micronesia (Federated States of), Marshall Islands, Kiribati, Cook Islands, Brunei Darussalam, Andorra and Maldives, Micronesia, Saint Vincent and the Grenadines.

APPENDIX E

References	
Data for	http://www.bcgatlas.org/ttp://www.bcgatlas.org/
TB prevalence	https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&lan=%22EN%22&iso2=%22AU%22