Original Research Article

DOI: https://dx.doi.org/10.18203/2394-6040.ijcmph20230603

Clinically significant bacteria on doctors stethoscope in Makurdi, Nigeria and their antibacterial susceptibilities

Iveren W. Nyinoh*, Shima W. Ackombo

Department of Biological Sciences, Benue State University Makurdi, Benue State, Nigeria

Received: 08 July 2021 Revised: 26 August 2021 Accepted: 31 August 2021

*Correspondence: Dr. Iveren W. Nyinoh,

E-mail: inyinoh@bsum.edu.ng

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: The stethoscope is highly susceptible to contamination, specifically by the diaphragm that comes into contact with the patient's body. This study aims at determining the presence of, and the most prevalent bacteria on medical interns and doctors' stethoscopes at the federal medical centre (FMC) and Benue State university teaching hospital (BSUTH), Makurdi, assess antimicrobial susceptibility of the isolates, and compare the levels of stethoscope contamination between the hospitals.

Methods: The study was a hospital-based cross-sectional study undertaken between December 2020 and May 2021. A total of 99 samples were taken using sterile swab sticks from the diaphragms of the sampled stethoscopes. Standard microbiological and biochemical tests were performed to identify the bacterial diversity. A paired sample t-test was used to compare the numbers of bacteria-contaminated stethoscopes used by doctors and interns in the two hospitals. A p<0.05 was considered as statistically significant.

Results: *Escherichia coli*, and coagulase negative *Staphylococci*, were found in all of the stethoscopes tested. *S. aureus* was found to be the most prevalent pathogen in both hospitals (43.43%), followed by CoNS (29.29%), *Klebsiella pneumonia*, and *Escherichia coli* (both 16.16% and 11.11%) respectively. All of isolates were susceptible to the antibiotics tested. There was a significant difference in the numbers of stethoscopes contaminated from FMC (58.75, 19.31) and BSUTH (72.5, 18.52); t (3)=28.72, p=(9.27E-05), with BSUTH showing highest contamination.

Conclusions: To reduce number of pathogens and risk of transmission, it is recommended that stethoscopes be sanitized after each patient consultation. Disposable stethoscope heads should also be considered to prevent crosscontamination.

Keywords: Stethoscopes, Healthcare workers, Bacteria, Antimicrobial susceptibility, Healthcare-associated infections. Makurdi

INTRODUCTION

Healthcare-associated infections (HAIs) are a substantial public health challenge globally, and patients acquire these infections during the period of receiving healthcare. These infections initially appear approximately 48 hours or more following hospitalization or in the 30 days following treatment. In high-risk populations, such as neonates, the elderly, and patients in

critical care, infections are significantly more severe, resulting in longer hospital admissions, prolonged impairment, additional expense on health systems, and increased morbidity and mortality.⁵⁻⁷ Healthcare professionals' hands are a major vehicle for transmitting microorganisms, but research has shown that contaminated medical devices are thought to be responsible for at least half of all HAIs in the United States.^{5,8-10}

Medical devices include thermometers, stethoscopes, and otoscopes, etc., and when contaminated, can transmit microorganisms from healthcare workers to patients. 1,2,5 Rene Theophile Hyacinthe Laënnec, a French physician, invented the stethoscope in 1916.11 Stethoscopes, considered the pride of physicians and healthcare workers, are acoustic medical devices used for auscultation, i.e., listening to sounds produced by different body parts such as the lungs, and heart, etc. and are extensively used in medical practice. It has been reported that the level of microbial colonization on stethoscopes is comparable to an individual's hand, earning them the moniker "doctors' third hand". 12,13 However, while these instruments directly come in contact with several patients daily, appropriate sterilization is not commonly practiced, and thus they might result in cross-contamination.^{2,14-17} Furthermore, though recommendations for careful sterilization of the stethoscope have been constantly suggested, disinfection of this device is not yet a conventional practice. 5,14,16,18

The bacterial diversity of stethoscopes and other noncritical devices has been examined in depth, and the results reveal that they can be used to disseminate microorganisms. 14,19-28 The findings of these studies and others have revealed a wide range of contamination rates ranging between 30-100%, as well as a variety of bacteria. 21,23,29-32 These bacteria include the following Streptococcus, Porphyromonas, Escherichia Corynebacterium, Methicillin-sensitive, and methicillinresistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Granulicatella, Propionibacterium, Bacteroides, Prevotella, vancomycin-resistant Enterococcus (VRE), and Clostridium difficile, etc. When bacteria contaminate stethoscope diaphragms, they can be disseminated to skin of patient in as little as 3 seconds.¹⁴ Standard auscultation methods entail several min of skin contact, which provides many opportunities for pathogen transmission. Studies of this kind are scarce in Makurdi, Nigeria. The aim of this study is therefore to investigate presence of and most prevalent bacterial contaminants on stethoscopes from doctors and interns at 2 major hospitals in Makurdi, Nigeria, and to evaluate antimicrobial susceptibility patterns of isolates, and compare bacterial contamination levels between 2 hospitals.

METHODS

Sample collection and identification of contaminating bacteria

This was a hospital-based cross-sectional study undertaken at the FMC and BSUTH, Makurdi, from January to May 2021. Medical doctors and medical interns who regularly use a conventional stethoscope and work in any ward at the two hospitals were chosen at random. Ethical clearance for this study was obtained from the ethical committee of the ministry of health, Makurdi, Benue State. The sterile stick swabs were moistened with normal saline and used to collect

duplicate samples from diaphragm of each stethoscope. The swabs were recapped, labeled, and immediately taken to the hospital laboratory where the samples were collected-FMC Wadata or BSUTH, Makurdi. Using aseptic techniques, each swab was streaked on cysteine lactose electrolyte deficient agar (CLED) (Becton DickinsonTM, UK), mannitol salt agar (Oxoid, UK), and Mac-Conkey agar (Oxoid, UK) using standard procedures.³³ The media was prepared following the manufacturer's instructions. The plates were incubated aerobically at 37°C for 24-48 hours. Isolates were first characterized using gram staining, followed by evaluation of colony morphology, and biochemical tests-lactose test, motility, citrate, coagulase, indole, and catalase tests.³⁴

Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was performed using the Kirby Bauer disk diffusion method as per clinical laboratory standard institute (CLSI) guidelines.³⁴ Antibiotic discs were chosen based on regularly used antibiotics in the study location, and discs against grampositive and gram-negative bacteria were used.

RESULTS

Identification of bacteria present on stethoscopes

In this study, 99 stethoscopes from 50 doctors and 49 medical interns investigated. Standard microbiological and biochemical assays were performed on the bacteria isolated from the stethoscopes, i.e., FMC and BSUTH, to determine the bacteria present. *E. coli*, *Klebsiella pneumoniae*, *coagulase-negative Staphylococci*, and *Staphylococcus aureus* were identified.

Most prevalent bacterial contaminants on the sampled stethoscopes

The prevalence of bacteria on the stethoscopes sampled from the FMC and BSUTH was determined. *S. aureus* was reported to be the most prevalent pathogen in both hospitals (43.43%), followed by coagulase negative *Staphylococcus* (29.29%), *K. pneumonia* and *Escherichia coli* (16.16% and 11.11%) respectively (Figure 1).

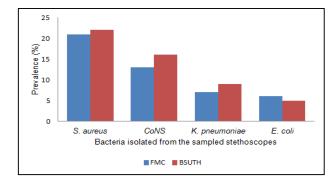


Figure 1: Prevalence of bacteria isolated for each hospital against the stethoscopes sampled.

Antibiotic susceptibility testing for bacteria isolated from the sampled stethoscopes

Antibiotic susceptibility testing of the isolates obtained from FMC was conducted. *S. aureus* was tested against 20 µg of Levofloxacin, *K. pneumonia* against 10 µg of Vancomycin, *E. coli* against 10 µg Gentamycin, and *CoNS* against 30 µg of Chloramphenicol. Although the disc potencies are unequal, the zones of inhibition indicate that all the isolated bacteria were susceptible to the tested antibiotics (Table 2).

Similarly, bacteria isolated from stethoscopes used by doctors and interns at BSUTH were subjected to antibiotic susceptibility testing. There is a difference in the antibiotics tested at FMC versus those at BSUTH.

The antibiotics were selected due to their availability at each hospital. Thus, *S. aureus* was tested against Rifampicin (30 μ g), *K. pneumoniae* (Vancomycin 30 μ g), *E. coli* (Streptomycin 20 μ g), and *CoNS* (Erythromycin 30 μ g. From the results, no resistance was found. The results are presented in Table 3.

Contamination levels for the hospitals investigated

The comparisons of FMC versus BSUTH indicate the following levels of contamination - *S. aureus* (53.8% versus 62.03%), *K. pneumonia* (38.46% vs. 46.20%), *E. coli* (47.62% vs. 52.3%), *CoNS* (37.97% vs.61.54%). For each bacteria isolated, BSUTH had the highest level of contamination as indicated in Table 3.

Table 1: Microbiological and biochemical characterizations of bacteria isolates obtained from stethoscope diaphragm at FMC and BSUTH.

Bacteria isolated	Morphological Characteristics	Gram test	Citrate test	Gram staining	Indole test	Coagulase test	Catalase test	Lactose test
E. coli	Shape: Straight rods Motility: Motile Opacity: Opaque Pigmentation: Yellow colonies on CLED	-	-	-	+	-	-	+
K. pneumoniae	Shape: Rods Motility: Non-motile Opacity: Opaque Pigmentation: Pink colour on MacConkey agar	-	+	-	-	-	+	+
CoNS	Shape: Cocci Motility: Non motile	+	-	+	-	-	+	+
S. aureus	Shape: Cocci Motility: Motile Opacity: Opaque Pigmentation: Deep yellow colonies on CLED agar	+	+	+	-	+	+	+

Table 2: Zone diameters (to the nearest whole mm) for bacteria isolated from federal medical center.

Bacteria isolated	Antibiotic tested	Antibiotic concentration	Zone of inhibition	Result
S. aureus	Levofloxacin	20 μg	29 mm	Susceptible
K. pneumoniae	Vancomycin	10 μg	18 mm	Susceptible
E. coli	Gentamycin	10 μg	24 mm	Susceptible
CoNS	Chloramphenicol	30 μg	22 mm	Susceptible

Table 3: Zone diameter (to the nearest whole mm) for bacterial isolates from BSUTH, Makurdi.

Bacteria isolated	Antibiotic tested	Antibiotic concentration	Zone of inhibition	Result
Staphylococcus aureus	Rifampicin	30 μg	30 mm	Susceptible
Klebsiella pneumoniae	Vacomycin	30 μg	20 mm	Susceptible
Escherichia coli	Streptomycin	20 μg	20 mm	Susceptible
CoNS	Erythromycin	30 μg	28 mm	Susceptible

Table 4: Prevalence of the isolated bacteria in the study locations.

Bacteria isolated	FMC (%)	BSUTH (%)
S. aureus	85 (53.80)	98 (62.03)
K. pneumoniae	40 (38.46)	55 (46.20)
E. coli	50 (47.62)	64 (52.38)
CoNS	60 (37.97)	73 (61.54)

A paired sample t-test was conducted to compare the numbers of bacteria-contaminated stethoscopes used by doctors and interns at FMC and BSUTH. There was a significant difference in the numbers of stethoscopes contaminated in FMC (58.75, 19.31) and BSUTH (72.5, 18.52); t (3)=28.72, p=(9.27E-05). These results suggest that more stethoscopes used by doctors and medical interns at BSUTH were contaminated with bacteria.

DISCUSSION

Pathogenic bacteria, specifically Staphylococcus aureus, were identified in 43.43% of the analyzed stethoscopes from BSUTH and FMC. Klebsiella pneumoniae (16.16%), Escherichia coli (11.11%), and CoNS were among the microorganisms found (29.29%). S. aureus, on the other hand, was the most prevalent bacteria in both hospitals studied, as well as, in the majority of research on healthcare workers (HCWs) stethoscope in other studies. 21,27-28 Other studies have also reported the bacteria identified in this study, on stethoscopes of HCWs. 14,21,25,27,29,31,35,36 The gram-positive *S. aureus* and CoNS are normal flora of the skin and mucous membranes in humans. Though they are not implicated in clinical infections on healthy skin, they do, however, have the ability to cause opportunistic infections and are an important part of the nosocomial pathogen family.^{37,38} Both organisms have the ability to develop multiple drug resistance in patients, which may be critical for immunocompromised individuals. ^{28, 39-40} These bacteria can be shed from the human skin, hence this was expected. Gram-negative bacteria such as E. coli and K. pneumoniae are found in the normal human intestinal flora. Their presence on the sampled stethoscopes in the current study could be due to HCWs' poor hand hygiene practices. Antibiotic resistance is a global health issue that leads to higher expenditures, longer hospital stays, therapeutic failure, and mortality. Interestingly, none of the antibiotics tested showed resistance to the test antibiotics-rifampicin, erythromycin, vancomycin, reflacin, gentamycin, levofloxacin, streptomycin, or chloramphenicol. Thus, implying that the tested antibiotics would restrict the growth of bacteria in the case of an infection.

The bacteria isolated had a higher prevalence at BSUTH by comparison to FMC Makurdi. In this study, all the stethoscopes sampled were contaminated with bacteria, representing a 100% stethoscope contamination rate. The results obtained in this study are similar to other global investigations that identified high contamination rates

ranging between 56-100% on stethoscopes used by healthcare workers. ^{23,27,28,30-32} High contamination rates may serve as potential vectors for the transmission of clinically significant pathogens causing HAIs.⁴¹ It has been well established that disinfection of stethoscopes and hand hygiene are two important factors in stethoscope hygiene. The dissemination of bacteria on stethoscopes that are regularly disinfected is low. Panhotra et al found a contamination rate of 94.1% in stethoscopes that were never cleaned and 13.6% on those cleaned daily. 42 Similarly, hand washing of healthcare workers following patient contact resulted in a low contamination rate of 28.5%. 40 High stethoscope contamination rates in this study could be due to infrequent stethoscope disinfection practices, lack of funds to purchase disinfectants, or lack of hand hygiene by the workers. Though the study did not determine stethoscope disinfection, further studies will assess stethoscope disinfection and hand washing practices at the study sites.

The current study has some limitations. Some bacteria, for example, are not culturable, and 16sRNA testing was not performed on the isolates. Regular workshops and educational campaigns in Makurdi on stethoscope disinfection, other non-critical devices, and hand hygiene are recommended for doctors and other healthcare workers.

CONCLUSION

To our knowledge, this is the first study to investigate the bacterial contaminants on health workers stethoscopes in Makurdi, Benue State, Nigeria. According to the findings of this investigation, every stethoscope tested from Makurdi's two major hospitals had at least one clinically significant bacterium, but S. aureus was the most common, and no resistance was found. Although some of the bacteria found are part of the normal commensal flora of the human body, in some circumstances, such as when a patient is immunocompromised, patient-to-patient cross contamination can occur and cause disease. As a result, the stethoscope might act as a vehicle for the transmission of bacteria to other patients. In comparison to FMC Makurdi, BSUTH has a higher prevalence of bacterial contamination. At this time, it is unknown whether the facilities examined had stethoscope disinfection protocols in place for doctors and healthcare personnel. However, the significant prevalence indicates that there are no stethoscope disinfection policies in place or that they are not strictly followed.

ACKNOWLEDGEMENTS

The authors thanks to the management and staff of FMC Wadata Makurdi and BSUTH Makurdi for their cooperation during sample collection and for allowing SWA to conduct the investigations in the Microbiology laboratory department of the hospital. We also thank the ethical committee of the ministry of health, Makurdi,

Benue State for granting ethical clearance to undertake the study.

Funding: No funding sources Conflict of interest: None declared

Ethical approval: The study was approved by the

Institutional Ethics Committee

REFERENCES

- Wenzel RP, Thompson RL, Landry SM, Russell BS, Miller PJ, Ponce de Leon et al. Hospital-acquired infections in intensive care unit patients: an overview with emphasis on epidemics. Jr Infect Control. 1983;4(5):371-5.
- 2. Sengupta S, Sirkar A, Shivananda PG. Stethoscopes and nosocomial infection. Indian J Pediatr. 2000;67(3):197-9.
- 3. Collins AS. Preventing Health Care-Associated Infections. In: Hughes RG, editor. Patient Safety and Quality: An Evidence-Based Handbook for Nurses. Rockville (MD): Agency for Healthcare Research and Quality (US); 2008. Available at: https://www.ncbi.nlm.nih.gov/books/NBK2683/. Accessed on 10 Feb, 2023.
- Revelas A. Healthcare-associated infections: A public health problem. Niger Med J. 2012; 53(2):59-64.
- Messina G, Burgassi S, Messina D, Montagnani V, Cevenini G. A new UV-LED device for automatic disinfection of stethoscope membranes. Am J Infect Control. 2015;43(10):e61-6.
- Guggenbichler JP, Assadian O, Boeswald M, Kramer A. Incidence and clinical implication of nosocomial infections associated with implantable biomaterialscatheters, ventilator-associated pneumonia, urinary tract infections. GMS Krankenhhyg Interdiszip. 2011;6(1):Doc18.
- 7. World Health Organization Report on the Burden of Endemic Health Care Associated Infection Worldwide. Available at: https://apps. who.int/iris/bitstream/handle/10665/80135/97892415 01507_eng.pd;jsessionid=7F83155702C33EEC68A AA100F103E01B?sequence=1. Accessed on 6 June 2020
- 8. Lee YT, Chen SC, Lee MC, Hung HC, Huang HJ, Lin HC et al. Time-series analysis of the relationship of antimicrobial use and hand hygiene promotion with the incidence of healthcare-associated infections. J Antibiot (Tokyo). 2012; 65(6):311-6.
- 9. Richards M J, Edwards J R, Culver D H and Gaynes R P. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect Control Hosp Epidemiol. 2000;21:510-515.
- Safdar N, Crnich CJ, Maki DG. Nosocomial Infections in the Intensive Care Unit Associated with Invasive Medical Devices. Curr Infect Dis Rep. 2001;3:487-495.

- 11. Roguin A. Rene Theophile Hyacinthe Laënnec (1781-1826). The Man Behind the Stethoscope. Clin Med Res. 2006;4(3):230-35.
- 12. Tschopp C, Schneider A, Longtin Y, Renzi G, Schrenzel J, Pittet D. Predictors of Heavy Stethoscope Contamination Following a Physical Examination. Infect Control Hosp Epidemiol. 2016;37(6):673-9.
- 13. Longtin Y, Schneider A, Tschopp C, Renzi G, Gayet-Ageron A, Schrenzel J, Pittet D. Contamination of stethoscopes and physicians' hands after a physical examination. Mayo Clin Proc. 2014;89(3):291-9.
- 14. Marinella MA, Pierson C, Chenoweth C. The stethoscope. A potential source of nosocomial infection? Arch Intern Med. 1997;157(7):786-90.
- 15. Ghumman GW, Ahmad N, Pop-Vicas A, Iftikhar S. Stethoscope Cleaning During Patient Care. R I Med J. 2018;101(4):18-20.
- 16. Álvarez JA, Ruíz SR, Mosqueda JL, León X, Arreguín V, Macías AE et al. Decontamination of stethoscope membranes with chlorhexidine: Should it be recommended? Am J Infect Control. 2016;44(11):e205-9.
- 17. West GF, Resendiz M, Lustik MB, Nahid MA. Bacterial Contamination of Military and Civilian Uniforms in an Emergency Department. J Emerg Nurs. 2019;45(2):169-77.
- 18. Raghubanshi BR, Sapkota S, Adhikari A, Dutta A, Bhattarai U, Bhandari R. Use of 90% ethanol to decontaminate stethoscopes in resource limited settings. Antimicrob Resist Infect Control. 2017;6:68.
- 19. Bernard L, Kereveur A, Durand D. Bacterial contamination of hospital physicians' stethoscopes. Infect Control Hosp Epidemiol. 1999;20(9):626-8.
- 20. Cohen SR, McCormack DJ, Youkhana A, Wall R. Bacterial colonization of stethoscopes and the effect of cleaning. J Hosp Infect. 2003;55(3):236-7.
- 21. Datta P, Kaur M, Rawat S, Gupta V, Chander J. Stethoscope, "the friendly foe"-A study to evaluate bacterial contamination of stethoscopes and disinfection practices. J Infect Dev Ctries. 2018;12(10):887-93.
- 22. Gerken A, Cavanagh S, Winner HI. Infection hazard from stethoscopes in hospital. Lancet. 1972;1(7762):1214-5.
- 23. Gupta N, Gandham N, Misra NR, Jadhav S, Ujgare M, Vyawahare C. The potential role of stethoscopes as a source of nosocomial infection. Med J DY Patil Uni. 2014;7(2):156-9.
- 24. Jeyakumari D, Nagajothi S, Praveen KR, Ilayaperumal G, Vigneshwaran SR. Bacterial colonization of stethoscope used in the tertiary care teaching hospital: a potential source of nosocomial infection. Int J Res Med Sci. 2017;5(1):142-5
- 25. Knecht VR, McGinniss JE, Shankar HM, Clarke EL, Kelly BJ, Imai I et al. Molecular analysis of bacterial contamination on stethoscopes in an intensive care unit. Infect Control Hosp Epidemiol. 2018:1-7.

- 26. O'Flaherty N, Fenelon L. The stethoscope and healthcare-associated infection: a snake in the grass or innocent bystander? J Hosp Infect. 2015;91(1):1-7.
- 27. Uneke CJ, Ogbonna A, Oyibo PG, Onu CM. Bacterial contamination of stethoscopes used by health workers: public health implications. J Infect Dev Ctries. 2010;4(7):436-41.
- 28. Smith MA, Mathewson JJ, Ulert IA, Scerpella EG, Ericsson CD. Contaminated stethoscopes revisited. Arch Intern Med. 1996;156(1):82-4.
- 29. Bukharie HA, Al-Zahrani H, Rubaish AM, Abdulmohsen MF. Bacterial contamination of stethoscopes. J Family Community Med. 2004;11(1):31-3.
- 30. Grecia SC, Malanyaon O, Aguirre C. The effect of an educational intervention on the contamination rates of stethoscopes and on the knowledge, attitudes, and practices regarding the stethoscope use of healthcar providers in a tertiary care hospital. Phillipp J Microbiol Infect Dis. 2008;37:20-33.
- 31. Shiferaw T, Beyene G, Kassa T, Sewunet T. Bacterial contamination, bacterial profile and antimicrobial susceptibility pattern of isolates from stethoscopes at Jimma University specialized hospital. Ann Clin Microbiol Antimicrob. 2013;12:39-46.
- 32. Wood MW, Lund RC, Stevenson KB. Bacterial contamination of stethoscopes with antimicrobial diaphragm covers. Am J Infect Control. 2007;35(4):263-6.
- 33. Cheesbrough M. District laboratory practice in tropical countries, part 2. 2nd ed. Cambridge: Cambridge University Press. 2006;105-14.
- Clinical Laboratory Standard Institute (CLSI). Performance standards for antimicrobial disk susceptibility tests (CLSI Document M100-S25). 25th ed. Wayne, IL: Clinical and Laboratory Standards Institute. 2015.

- 35. Pal K, Chatterjee R, Biswas A, Samanta AK. Bacterial Contamination and disinfection of stethoscopes: a knowledge gap among health care personnel of a tertiary care hospital of rural Bengal. IOSR-JDMS. 2015;14:44-9.
- 36. Fujita H, Hansen B, Hanel R. Bacterial contamination of stethoscope chest pieces and the effect of daily cleaning. J Vet Intern Med. 2013;27(2):354-8.
- 37. Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microbiol Rev. 2014;27(4):870-926.
- 38. Lowy FD. *Staphylococcus aureus* infections. N Engl J Med 1998; 339(8):520-32.
- 39. Fenelon L, Holcroft L, Waters N. Contamination of stethoscopes with MRSA and current disinfection practices. J Hosp Infect. 2009;71(4):376-8.
- 40. Thapa S, Sapkota LB. Bacteriological assessment of stethoscopes used by healthcare workers in a tertiary care centre of Nepal. BMC Res Notes. 2017;10(1):353.
- 41. Treakle AM, Thom KA, Furuno JP, Strauss SM, Harris AD, Perencevich EN. Bacterial contamination of health care workers' white coats. Am J Infect Control. 2009;37(2):101-5.
- 42. Panhotra BR, Saxena AK, Al-Mulhim AS. Contaminated physician's stethoscope--a potential source of transmission of infection in the hospital. Need of frequent disinfection after use. Saudi Med J. 2005;26(2):348-50.

Cite this article as: Nyinoh IW, Ackombo SW. Clinically significant bacteria on doctors stethoscope in Makurdi, Nigeria and their antibacterial susceptibilities. Int J Community Med Public Health 2023;10:931-6.