## **Research Article**

DOI: http://dx.doi.org/10.18203/2394-6040.ijcmph20160644

## Dietary diversity among women in the reproductive age group in a rural field practice area of a medical college in Mandya district, Karnataka, India

## Shashikantha SK, Sheethal MP\*, Vishma BK

Department of Community Medicine, Adichunchangiri Institute of Medical Sciences, Mandya, Karnataka, India

Received: 20 January 2016 Accepted: 16 February 2016

# \*Correspondence: Dr. Sheethal MP,

E-mail: sheethalmp86@gmail.com

**Copyright:** © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### **ABSTRACT**

**Background:** Micronutrient malnutrition remains one of the largest nutritional problems worldwide. Monotonous diets based on starchy staples lack essential micronutrients and contribute to the burden of malnutrition and micronutrient deficiencies. Intake of diverse diet is a cost-effective strategy to overcome this problem. The objective of the study was to assess the dietary diversity among women in reproductive age group in a rural field practice area and to determine the nutritional status of the women in the reproductive age group.

**Methods:** A cross-sectional study was conducted for a period of 3months in the rural area. Women in reproductive age group were included in the present study. A pretested questionnaire was used to obtain the information regarding their socio-demographic profile and food consumed. Dietary diversity score was measured using the food and agricultural organization (FAO) guidelines. Weight, height and waist circumference of the participants were measured to determine their nutritional status.

**Results:** The mean age of the study subjects was  $33.68\pm9.27$  years. Majority of them had dietary diversity score (DDS) and food variety score (FVS) score above 5 and 4 respectively. Mean BMI was  $23.26\pm4.31$  kg/mt<sup>2</sup>. Fifty percent of them had a Normal BMI range. One third ( $28.6\% \pm6.5\%$ ) of them were malnourished. The mean waist circumference was  $79.31\pm10.58$ cms. On application of logistic regression, those aged between 15-30 years had better odds of having DDS of 5 and above (aOR 2.348 CI 0.743-7.424). Subjects with normal BMI range also had better odds of having DDS of 5 and above (aOR 0.861 CI 0.154-4.799).

**Conclusions:** The study found most of the women in the reproductive age group were consuming a diverse diet and those subjects with better dietary diversity score had their body mass index in the normal range.

**Keywords:** DDS, FVS, Body mass index

### INTRODUCTION

Nutrition is a main component of health and development. All people need a variety of foods to meet requirements for essential nutrients, and the value of a diverse diet has long been recognized. Dietary diversity is a qualitative measure of food consumption that reflects household access to a variety of foods, and is also a proxy for nutrient adequacy of the diet of individuals. Lack of diversity is a severe problem among poor populations in the developing world, where diets are based

predominantly on starchy staples which lack essential micronutrients and contribute to the burden of malnutrition and micronutrient deficiencies.<sup>2,3</sup>

More specifically women in the reproductive age group and children are most vulnerable to malnutrition due to low dietary intakes, inequitable distribution of food within the household, improper food storage and preparation, dietary taboos, infectious diseases, and care.<sup>4</sup> Poor health has repercussions not only for women but also their families. Women in poor health are more likely

to give birth to low weight infants. They also are less likely to be able to provide food and adequate care for their children. Finally, a woman's health affects the household economic well-being, as a woman in poor health will be less productive in the labour force.<sup>5</sup>

Because of the perceived importance of dietary diversity for health and nutrition of women, the present study was undertaken in assessing the dietary diversity and their nutritional status.

#### **METHODS**

A cross-sectional study was conducted over a period of 3 months from July to September 2015 in the rural field practice area of Adichunchangiri Institute of Medical Sciences, Mandya, Karnataka, India. A village with a population of 560 was selected randomly from the list of villages in the area. The village thus selected had 90 women in the reproductive age group. Those who did not give consent, those who were unavailable even after three successive visits and pregnant and lactating women were excluded from the present study. Thus a total of 77 women were included in the present study. A pretested questionnaire was used to obtain the information regarding their socio-demographic profile. Twenty four hour recall method was used to obtain the information on the food consumed and Dietary diversity was measured using the FAO (Food and Agricultural Organization) one day diversity questionnaire. The individual based dietary diversity questionnaire used included 9 groups of foods, which covers almost every food taken. In addition the questionnaire had a single question about any food or fast food consumed out of the house. We evaluated one usual day in the week except holidays.3

Anthropometric measurements including weight and height of participants were measured, using a digital electronic scale (range 0.1-150 kg) and a stadiometer (range 0-220 cm) respectively. Body Mass Index (BMI) was calculated using the formula (BMI= weight (kg)/height in m²). Based on their BMI cut-off values for adults, subjects were divided into four groups: overweight, obese, underweight and normal weight. Waist circumference was measured at the approximate midpoint between the lower margin of last palpable rib and the top of the iliac crest. All measurements were taken by one of the researchers to reduce the chances of error.

#### **RESULTS**

The mean age of the study subjects was 33.68±9.27 years (18-49 years). More than two third (70.1%) of the subjects had studied up-to high school and above. More than 60% of the subjects were homemakers and nearly 60% of them belonged to nuclear family (Table 1).

The mean BMI was  $23.26\pm4.31$  kg/mt<sup>2</sup>. The mean waist circumference was  $79.31\pm10.58$ cms (Table 2).

Table 1: Distribution of the study subjects by their socio demographic variables.

| Variables              | N=77 | Percentage |
|------------------------|------|------------|
| Education              |      |            |
| Illiterate             | 11   | 14.3       |
| Primary                | 12   | 15.6       |
| High School            | 31   | 40.3       |
| Pre University College | 17   | 22.0       |
| Graduation and above   | 6    | 7.8        |
| Occupation             |      |            |
| Government             | 10   | 13.0       |
| Private                | 7    | 9.1        |
| Housewife              | 49   | 63.6       |
| Farmer                 | 7    | 9.1        |
| Student                | 4    | 5.2        |
| Family type            |      |            |
| Nuclear                | 46   | 59.7       |
| Joint                  | 6    | 7.8        |
| Three generation       | 22   | 28.6       |
| Single                 | 3    | 3.9        |

Table 2: Distribution of the study subjects by their body mass index.

| Body mass index | N=77 | Percentage |
|-----------------|------|------------|
| <18.5           | 11   | 14.3       |
| 18.5-24.99      | 39   | 50.6       |
| 25-29.99        | 22   | 28.6       |
| >30             | 05   | 06.5       |

Table 3: Distribution of the study subjects according to their dietary diversity score.

| Dietary diversity score | N=77 | Percentage |
|-------------------------|------|------------|
| 3                       | 1    | 1.3        |
| 4                       | 17   | 22.1       |
| 5                       | 39   | 50.6       |
| 6                       | 1    | 1.3        |
| 7                       | 16   | 20.8       |
| 8                       | 2    | 2.6        |
| 9                       | 1    | 1.3        |

Table 4: Distribution of the study subjects according to their food variety score.

| Food variety score | N=77 | Percentage |
|--------------------|------|------------|
| 4                  | 39   | 50.6       |
| 5                  | 30   | 39         |
| 6                  | 8    | 10.4       |

Thirty nine (50.6%) of them had a DDS score of 5. 50% of them had FVS score of 4 (Table 4).

Table 5: Distribution of the study subjects according to the food groups consumed.

| Food group                                 | N=77 (%)  |
|--------------------------------------------|-----------|
| Starchy staples                            | 77(100)   |
| Dark green leafy vegetables                | 30 (39)   |
| Other vitamin A rich fruits and vegetables | 37(48.1)  |
| Other fruits and vegetables                | 74(96.1)  |
| Organ meat                                 | 3(3.9)    |
| Meat and fish                              | 22 (28.6) |
| Eggs                                       | 2(2.6)    |
| Legumes, nuts and seeds                    | 66(85.7)  |
| Milk and milk products                     | 75(97.4)  |

Table 6: Distribution of the study subjects according to their dietary diversity.

| Food variety score     | N=77 (%)  |
|------------------------|-----------|
| Cereals                | 77(100)   |
| Vegetables             | 73 (94.8) |
| Fruits                 | 26(33.8)  |
| Meat and nuts          | 24 (31.2) |
| Milk and milk products | 75(97.4)  |
| Fat, oil and sweets    | 77(100)   |

The subjects with waist circumference of 0.85 cm and above had better odds of having DDS score of 5 and above (aOR= 1.713). The subjects with DDS score of 5 and above had better odds of remaining in the normal BMI range (aOR=1.934).

#### **DISCUSSION**

The underlying principle of promulgating a variety of foods in the diet will ensure an adequate intake of essential nutrients and hence promote good health. Individual dietary diversity scores have promised as a rapid and efficient means to estimate nutrient adequacy of the diet. For example, health professionals can do a quick 24-hour recall with the respondent to ascertain DDS over the previous 24 h.

Our study included women in the reproductive age group (15-49 years) in the study area, in assessing their dietary diversity score (DDS), Food variety score (FVS) and anthropometric measurements as they are one of the most vulnerable groups in having nutrient deficiency at various levels of their life cycle. Our study conducted on women in the reproductive age group with the mean age being 33.68±9.27 years (ranged 18-49 years). Most of the women (59.7%) belonged to nuclear family. The mean height and weight being 153.57±4.91 cm and 54.89± 11.52 kg respectively.

Mean BMI was 23.26±4.31 kg/mt<sup>2</sup>. 50% of them had a Normal BMI range (18.5-24.99kg/mt<sup>2</sup>). One third (28.6% + 6.5%) of them were malnourished (Overweight + Underweight). The mean waist circumference was

79.31±10.58cms. More than half of them had a DDS score of 5.50% of them had FVS score of 4. More than two third (76.6%) of the subjects had a DDS of 5 and above. All the study subjects (77 i.e. 100%) had FVS score of 4 and above. On application of logistic regression those aged between 15-30 years had better odds having DDS of 5 and above (aOR 2.348 CI .743-7.424). Subjects with DDS of 5 and above had a better odds of having their BMI in the normal range (aOR 0.861 CI 0.154-4.799).

In a study conducted by Taruvinga et al, in South Africa, more than 70% of the study rural subjects had household DDS of 4 and above in a scale of 12. This finding is similar to the one in our study but subjects in our study were women in the reproductive age group and their dietary diversity was assessed using individual dietary diversity score, which is a better measure of the same.<sup>6</sup>

In a study by Veena et al, conducted among women between 30 to 60 age group in an urban slum near Hyderabad showed their mean (± SD) height, weight and body mass index (BMI) were 149.1±5.49 cm, 49.2±9.85 kg and 22.1±3.99 kg/mt², respectively. This finding is similar to the one in our study except the fact that urban slum population is a mixture of people from different locality thus showing the minor variations.<sup>7</sup>

In a report published by Vinay Kumar et al, in the year 2012, the nutritional status of Indian women is inadequate: 33% of married women (aged 15–49 years) are too thin (i.e., BMI <18·5 kg/m²). This is in contrast to the findings from our study which found 14.3% of women in the reproductive age group having BMI below 18.5kg/mt². The reason for this difference might be the fact that the most of the women in our study belonged to the nuclear family and hence a better standard of living.<sup>8</sup>

In a study by Goswami et al, the mean height, weight and BMI was 152.88cm, 52.88kg and 22.36kg/mt<sup>2</sup>. These findings are similar to the results in our study.<sup>9</sup>

In a analyses done by Bentley et al, more than 37% of rural Indian women had a low BMI ( $<18.5 \text{ kg/m}^2$ ) and 7.3% a BMI  $>25 \text{ kg/m}^2$  (overweight or obese), compared with 12.1% and 37% of women living in large urban areas with low and high BMI, respectively. Our study findings deviate slightly from the above findings as the subjects in our study belong to different socioeconomic status as it's a mixture of local residents of that village and the workers of the medical institute who have resided because of the proximity to the institution.  $^{10}$ 

In a study done in Iran among adolescent girls, most of them aged between 15-16 years, the mean and SD of the dietary diversity score was  $6.81\pm1.75$ . The anthropometric measurements of the subjects were in a healthier range compared to our study as the subjects included in that study were young, most of them in the age group of 16 years.  $^{1}$ 

In a study by Hedwig et al, Using a mean DDS of 4 to define poor dietary intake and because of lack of national dietary data on adults, the findings of this study revealed that 19.6% of the women had a dietary score (DDS) less than four indicating a poor dietary diversity, while 55.4% consumed less than the average number of foods consumed by the group. This is very much similar to the findings in our study which showed 23.4% of the subjects with DDS score below 5 and those aged between 15-30 years had better odds having DDS of 5 and above. 11

#### CONCLUSION

The study found most of the women in the reproductive age group were consuming a diverse diet and those subjects with better dietary diversity score had their body mass index in the normal range.

Funding: No funding sources Conflict of interest: None declared

Ethical approval: The study was approved by the

Institutional Ethics Committee

#### REFERENCES

- Vakili M, Abedi P, Sharifi M, Hosseini M. Dietary Diversity and Its Related Factors among Adolescents: A Survey in Ahvaz-Iran. Global Journal of Health Science. 2013;5(2):181-6.
- 2. Arimond M, Ruel MT. Dietary Diversity Is Associated with Child Nutritional Status: Evidence from 11 Demographic and Health Surveys. J Nutr. 2004;134:2579-85.
- Kennedy G, Ballard T, Dop MC. Guidelines for Measuring Household and Individual Dietary Diversity. Rome: Nutrition and Consumer

- Protection Division, Food and Agriculture Organization of the United Nations. 2010:53.
- Girma, Woldemariam, Genebo T. Determinants of Nutritional Status of Women and Children in Ethiopia. ORC Macro. 2002:32.
- Kamalapur SM, Reddy S. Women Health in India: An Analysis. Int. Res. J. Social Sci. 2013;2(10):11-
- 6. Taruvinga A, Muchenje V, Mushunje A. Determinants of rural household dietary diversity. International Journal of Development and Sustainability. 2013;2(4).
- 7. Shatrugna V, Kulkarni B, Kumar PA,Rani KU, Balakrishna N. Bone status of Indian women from a low-income group and its relationship to the nutritional status. Osteoporos Int. 2005;16:1827-35.
- 8. Paul VK et al. Reproductive health, and child health and nutrition in India: meeting the challenge. Lancet. 2011;377(9762):332-49.
- 9. Ritu G, Mini B. Nutritional Status among adult Karbi Women of Kamrup District, Assam. Int. Res. J. Social Sci. 2015;4(9):17-20.
- 10. Bentley ME, Griffiths PL. The burden of anemia among women in India. European Journal of Clinical Nutrition. 2003;57:52-60.
- 11. Acham H, Theron WH, Egal AA. Dietary diversity, micronutrient intake and their variation among black women in informal settlements in South Africa: A cross-sectional study. Int J Nutr Metab. 2012;4(2):24-39.

Cite this article as: Shashikantha SK, Sheethal MP, Vishma BK. Dietary diversity among women in the reproductive age group in a rural field practice area of a medical college in Mandya district, Karnataka, India. Int J Community Med Public Health 2016;3:746-9.