Case Report

Cold agglutinin disease related mismatch between hematocrit and hemoglobin values

Emre Hoca¹*, Fatma Pınar Ziyadanoğlu², Atay Can Kula², Hayriye Esra Ataoğlu²

¹Internal Medicine Clinic, Üsküdar State Hospital, İstanbul, Turkey
²Internal Medicine Clinic, Haseki Training and Research Hospital, İstanbul, Turkey

Received: 13 November 2019
Accepted: 12 December 2019

*Correspondence:
Dr. Emre Hoca,
E-mail: emre.hoca@hotmail.com

ABSTRACT

Autoimmune hemolytic anemia is a disease characterized by destruction of red blood cells (RBC) and anemia, caused by production of antibodies released against the body’s own RBCs. While this condition is more commonly idiopathic, it may accompany autoimmune diseases as well. Cold agglutinin disease (CAD) is a rare subtype of acquired autoimmune hemolytic anemia, however, is an idiosyncratic clinical and pathological terminology, usually seen in older ages. This condition is caused by IgM antibodies called “cold agglutinins” formed against I antigens on RBC membranes which cause agglutination of RBCs at lower temperatures. In this case, a 56 year old male patient who was diagnosed with CAD secondary to Epstein-Barr virus (EBV) infection is being presented.

Keywords: Cold agglutinin disease, Hemoglobin-hematocrite mismatch, Epstein-Barr virus

INTRODUCTION

Cold agglutinin disease (CAD) is usually a chronic type of acquired hemolytic anemia. Cold agglutinins are detected in approximately 20% of patients with autoimmune hemolytic anemia. IgM-type autoantibodies that have specificity to I/i antigens in erythrocytes and act by binding to these antigens, are associated with cold agglutinin disease.¹ These autoantibodies become active at lower temperatures. Thus, cold agglutinin disease is usually present in areas with a cold climate or in the peripheral body parts, such as the nose, ears and fingers.² Most chronic CAD cases are idiopathic. In addition, it can be seen secondary to waldenström macroglobulinemia, lymphoma and chronic lymphocytic leukemia (CLL). The most common treatment for chronic CAD is the anti CD20 antibody rituximab. There are also ongoing studies for other treatment options. Splenectomy and prednisone have no place in the treatment. Acute CAD develops more frequently postinfectiously. This condition may develop after viral infections such as infectious mononucleosis, cytomegalovirus (CMV) or bacterial infections such as mycoplasma pneumonia and heals spontaneously within 3-4 weeks. Other chronic diseases such as diabetes mellitus, thyroid dysfunction, chronic renal failure and gastrointestinal loss anemia which may lead to chronic anemia should also be excluded in the differential diagnosis.³⁻⁶

CASE REPORT

A 56 year old man with productive cough and shortness of breath presented at internal medicine outpatients department. The patient who described preceding flu-like symptoms, high fever, fatigue about a month ago also explained that he began expectorating green pus and coughing for the last 10 days. His past medical history included hypertension, benign prostatic hyperplasia (BPH), heart failure (HF). He had histories of urologic operation for nephrolithiasis and orthopedic operation for carpal tunnel syndrome. His family history also
Cold agglutinin disease is a rare type of chronic autoimmune hemolytic anemia caused by cold agglutinins which are IgM autoantibodies formed against I antigens of RBC membranes. While IgM antibodies typically react weakly with RBCs at a temperature of 37 °C, cooler temperatures such as 0-4 °C cause them to have a strong hemolytic effect against RBCs. Therefore the symptoms are more frequently seen at cooler climates or at winter season. Because the high temperature of circulating blood in human body rarely drops down below 20°C even at peripheral tissues, autoantibodies that are capable of being activated at higher temperatures usually cause clinical findings. These clinical findings can be usually observed at peripheral organs such as nose, fingers or ears. When the circulating blood reaches a higher temperature, however, IgM autoantibodies detach from the surface antigens of RBC membranes that they were previously bound to; this detachment results in reduction of symptoms. Extravascular hemolysis due to macrophage mediated RBC destruction within Kupffer cells of the liver secondary to complement (usually C3b) activation and rarely intravascular hemolysis due to the effect of membrane attack complex may be seen. Cases with CAD are usually idiopathic (also called primary cold agglutinin disease). CAD can also be seen in Waldenstörm macroglobulinemia, lymphoma, CLL, infectious mononucleosis, CMV infection and autoimmune diseases. CAD usually manifests itself with symptoms such as acrosyanosis, livedo reticularis, episodic back pain, dark urine. Reticulocytosis due to hemolysis, indirect hyperbilirubinemia, positive coombs test along with Hb anemia requiring transfusion may be detected. Treatment approach to CAD is usually symptomatic. Especially avoidance of cold exposure increases quality of life. Unlike other etiologies of autoimmune hemolytic anemia, splenectomy and prednisone are not helpful as treatment options. Blood transfusion is also unhelpful, since RBCs in donor blood also have I antigens. If the patient suffers from deep anemia requiring transfusion, transfusion must be done at warm temperatures. In case of patients not responding to symptomatic treatments or avoidance therapy, treatment option is Rituximab. Response rate to Rituximab is 60%.
Drug combinations such as Rituximab-bendamustin or Rituximab-fludarabin can also be used. In addition, studies with monoclonal antibodies that prevent complement activation proceed.

CONCLUSION

As seen from our patient, in patients who suffer from symptoms of hemolytic anemia after having an infection especially at cooler temperatures in addition to having Hb-Hct mismatch in their CBC results, cold agglutinin disease as differential diagnosis should be considered.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: Not required

REFERENCES


Cite this article as: Hoca E, Ziyadanoğlu FP, Kula AC, Ataoğlu HE. Cold agglutinin disease related mismatch between hematocrit and hemoglobin values. Int J Community Med Public Health 2020;7:770-2.