# **Original Research Article**

DOI: http://dx.doi.org/10.18203/2394-6040.ijcmph20195849

# Assessment of risk of developing diabetes using Indian diabetes risk score in the urban field practice area of Rajarajeswari Medical College and Hospital, Bangalore

Nazia N. Shaik, Swapna M. Jaswanth\*, Shashikala Manjunatha

Department of Community Medicine, Rajarajeswari Medical College and Hospital, A Constituent College of Rajiv Gandhi University, Bangalore, Karnataka, India

Received: 23 October 2019 Revised: 06 December 2019 Accepted: 07 December 2019

# \*Correspondence:

Dr. Swapna M,

E-mail: swapnajaswanth@gmail.com

**Copyright:** © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### **ABSTRACT**

**Background:** Diabetes is one of the largest global health emergencies of the 21st century. As per International Federation of Diabetes some 425 million people worldwide are estimated to have diabetes. The prevalence is higher in urban versus rural (10.2% vs 6.9%). India had 72.9 million people living with diabetes of which, 57.9% remained undiagnosed as per the 2017 data. The objectives of the present study were to identify subjects who at risk of developing Diabetes by using Indian diabetes risk score (IDRS) in the Urban field practice area of Rajarajeswari Medical College and Hospital (RRMCH).

**Methods:** A cross sectional study was conducted using a Standard questionnaire of IDRS on 150 individuals aged ≥20 years residing in the Urban field practice area of RRMCH. The subjects with score <30, 30-50, >or =60 were categorized as having low risk, moderate risk and high risk for developing diabetes type-2 respectively.

**Results:** Out of total 150 participants, 36 (24%) were in high-risk category (IDRS≥60), the majority of participants 61 (41%) were in the moderate-risk category (IDRS 30–50) and 53 (35%) participants were found to be at low-risk (<30) for diabetes. Statistical significant association was found between IDRS and gender, literacy status, body mass index (p<0.00001).

**Conclusions:** It is essential to implement IDRS which is a simple tool for identifying subjects who are at risk for developing diabetes so that proper intervention can be carried out at the earliest to reduce the burden of diabetes.

Keywords: Diabetes, IDRS, Urban area

#### INTRODUCTION

Diabetes is one of the largest global health emergencies of the 21st century. Diabetes is among the top 10 causes of death globally and together with the other three major noncommunicable diseases (NCDs) (cardiovascular disease, cancer and respiratory disease) account for over 80% of all premature NCD deaths. Diabetes prevalence has been rising more rapidly in middle and low-income countries.

As per International Federation of Diabetes some 425 million people worldwide, or 8.8% of adults 20-79 years, are estimated to have diabetes. About 79% of them live in low and middle-income countries. By 2045, 629 million or 10.6% of people 20-79 years, will have diabetes. The prevalence of diabetes for women 20-79 years is estimated to be 8.4% which is slightly lower than among men (9.1%). The prevalence is higher in urban versus rural (10.2% vs 6.9%).<sup>3</sup>

India had 72.9 million people living with diabetes as per the 2017 data. Of these, the proportion undiagnosed is 57.9%, which adds to the disease burden. Diabetes accounted for 10.7% of global all-cause mortality among people in 20-79 years age group.<sup>3</sup>

Diabetes is a major cause of blindness, kidney failure, heart attacks, stroke and lower limb amputation, vision loss and nerve damage. The starting point for living well with diabetes is an early diagnosis—the longer a person lives with undiagnosed and untreated diabetes, the worse their health outcomes are likely to be. 4

Diabetes is one of the contender diseases for which the community can be screened as it qualifies criteria of having a long latent asymptomatic stage that may be present for up to seven years before diagnosis, is treatable, and testing is acceptable to patients.<sup>5</sup> Early treatment of diabetes improves micro as well as macro vascular outcomes in the long run.<sup>4</sup>

It has been acknowledged that diabetic screening can add quality of life years. Madras Diabetes Research Foundation gave the countrymen the Indian Diabetes Risk Score (IDRS) which effectively screens for those at high risk of developing diabetes. This score is based on an extremely large population base study on diabetes in India (Chennai Urban Rural Epidemiology Study). This screening score has a sensitivity of 72.5% and specificity of 60.1% in the Indian community. The advantages of this tool encompasses it is no cost, non-invasive, simple, and easy applicability by the target population during mass screening programmes.

Early identification of the individuals at risk of developing diabetes would help in taking appropriate intervention in the form of dietary changes and increasing physical activity, thus helping to prevent, or at least delay, the onset of diabetes. Hence, identification of atrisk individuals is extremely important to prevent diabetes in India.<sup>9</sup>

According to the study done by ICMR-INDIAB, the prevalence of diabetes mellitus in rural and urban areas in Karnataka was found out to be 5.6% and 11.1% respectively. Considering, high prevalence in urban areas this study is conducted in an Urban area.

# Objectives

The objectives of the present study were to identify subjects at risk of developing diabetes by using IDRS in the field practice area of Rajarajeswari Medical College and Hospital, Bengaluru.

## **METHODS**

A community-based cross-sectional study was conducted for a period of 3months from January 2019 to March 2019 after obtaining clearance from the ethical committee

in the urban field practice area of Rajarajeswari Medical College and Hospital which has a total population of 7745. Among them 5291 (68.33%) belonged to adult  $(\geq 20 \text{ years})$  age group. Adults  $(\geq 20 \text{ years})$ , who are not known cases of diabetes mellitus from each house were included in the study. All the participants were briefed regarding the objectives of the study. Participant information sheets which contained information about the objectives and procedures of the study were distributed and explained to all the participants. Written informed consent was obtained from them. Adults residing for less than 6 months in the area, pregnant and lactating mothers were excluded from the study. Study was conducted on 150 adults. The sample size was calculated using the  $n=z^2p$ (1-p) $/d^2$ formula. where: p=prevalence=11%; q=1-p=89%; d=absolute precision: 5%; n=sample size=150.<sup>10</sup> House to house visit was done, houses were selected by systematic random sampling and a single eligible participant from each selected house was interviewed.

Details on sociodemographic profile and IDRS tool given as Figure 1 was used to collect data by interview method. Anthropometric measurements were done following this.<sup>7</sup>



Figure 1: Indian diabetic risk score.<sup>7</sup>

IDRS developed by Mohan et al and parameters comprising two modifiable (waist circumference, physical activity) and two non-modifiable risk factors (age, family history) for diabetes. IDRS analysis was done with the help of all four parameters.

If age <35 years score is=0, if 35-49 years score is=20, if >50 years score=30, waist circumference <80 cm for female and <90 cm for male score = 0, >80-89 cm for female and >90-99 cm male score=10, >90 cm for female and >100 cm for male score=20, physical activities vigorous exercise or strenuous work score=0, moderate exercise work-home=10, mild exercise work/home=20, no exercise and sedentary work-home=30, family history

of diabetes, no family history=0, family history present either parent=10, family history present both parents=20.

After adding all four parameters, if risk score (>60 very high risk, 30-50 moderate risk, <30 low risk). It is helpful to identify subjects at high risk for diabetes and also raised awareness about diabetes and its risk factors.

Waist circumference was measured to the nearest 0.1 cm at the midpoint between the tip of the iliac crest and the last costal margin in the back and at the umbilicus in the front, using a non-stretchable tape, at the end of normal expiration, with the subject standing erect in a relaxed position. Abdominal central obesity was considered to be present when the waist circumference was >80 cm in women and >90 cm in men. 11

Physical activity levels were graded based on WHO steps definitions of sedentary, mildly, moderately or vigorously physically active. <sup>12</sup>

Family history of diabetes if either or both of a subject's parents had diabetes, they were considered to have a positive family history.<sup>13</sup>

Illiterate is a person aged  $\geq 7$  years, who can neither read nor write, or can only read but cannot write in any language. Literate is a is a person aged  $\geq 7$  years, who can read and write with understanding in any language. <sup>14</sup>

Weight was measured in minimal clothing with bathroom weighing scale. Height was measured with a stadiometer with person standing erect, feet parallel and bare-feet. Body mass index (BMI) grading was done using WHO international standards.<sup>15</sup>

Subjects under high risk category were referred to our urban health centre and those with high blood sugar levels were started on treatment and were followed up. Those with moderate risk category were counselled on life style modification.

#### Statistical analysis

The data was collected and compiled using Excel and analysed using SPSS software version 21. The quantitative variables like age, waist circumference; BMI was assessed using mean and standard deviation. The qualitative data like literacy status, gender, family history, physical activity was assessed using frequency and percentage. Test of significance used was Chi-square test.

#### **RESULTS**

Of all the 150 participants interviewed, majority of the study participants, 60 (49%) were in the age group of 35-49 years followed by 57 (38%) <35 years and 33 (22%) were  $\geq$ 50 years. Mean Age in study population was 41.44±15.5 years. As shown in the Table 1, out of 150 participants, 49 (37%) were males, 101 (63%) were females. Out of 150 subjects, 82(55%) were literate, 68(45%) were illiterate. 130 were married and 20 were unmarried. Mean BMI was  $26.3\pm6.2$  kg/m<sup>2</sup>.

As shown in the Table 2, out of 150 participants, 36 (24%) had a high-risk score (IDRS≥60), the majority of participants 61 (41%) were in the moderate-risk category (IDRS 30–50) and 53 (35%) participants were found to be at low-risk (<30) for diabetes.

| Table 1: Distribution of study subjects accor | ding to socio-demographic pro | ofile (n=150) | ). |
|-----------------------------------------------|-------------------------------|---------------|----|
| Characteristic                                | No. of subjects               | 0/0           |    |

| S. no. |                 | Characteristic | No. of subjects | %   |
|--------|-----------------|----------------|-----------------|-----|
|        |                 | Male           | 49              | 33  |
| 1      | Gender          | Female         | 101             | 67  |
|        |                 | Total          | 150             | 100 |
| 2      |                 | Literate       | 82              | 55  |
|        | Literacy status | Illiterate     | 68              | 45  |
|        |                 | Total          | 150             | 100 |
| 3      |                 | Married        | 130             | 87  |
|        | Marital status  | Unmarried      | 20              | 13  |
|        |                 | Total          | 150             | 100 |
| 4      |                 | Present        | 47              | 22  |
|        | Family history  | Absent         | 103             | 69  |
|        |                 | Total          | 150             | 100 |

Table 2: Distribution of study subjects according to IDRS (n=150).

| S. no. | IDRS risk score     | No. of subjects | %   |
|--------|---------------------|-----------------|-----|
| 1      | High risk ≥60       | 36              | 24  |
| 2      | Moderate risk 30-50 | 61              | 41  |
| 3      | Low risk <30        | 53              | 35  |
|        | Total               | 150             | 100 |

Table 3: Distribution of risk components of IDRS among study subjects (n=150).

|                     | Nie of starte             | IDRS              |                            |                  |  |
|---------------------|---------------------------|-------------------|----------------------------|------------------|--|
| Variables           | No. of study subjects (%) | ≥60 high risk (%) | 30-50 moderate<br>risk (%) | <30 low risk (%) |  |
| Age (in years)      |                           |                   |                            |                  |  |
| <35                 | 57 (38)                   | 1 (1)             | 20 (13)                    | 36 (24)          |  |
| 35 to 49            | 60 (40)                   | 15 (10)           | 33 (22)                    | 12 (8)           |  |
| ≥50                 | 33 (22)                   | 20 (13)           | 8 (6)                      | 5 (3)            |  |
| Total               | 150 (100)                 | 36 (24)           | 61 (41)                    | 53 (35)          |  |
| Waist circumference |                           |                   |                            |                  |  |
| <80 cm (female)     | 39 (26)                   | 1 (2)             | 6 (11)                     | 8 (10)           |  |
| <90 cm (male)       | 15 (10)                   | 1 (2)             | 3 (5)                      | 5 (7)            |  |
| ≥80–89 cm(female)   | 34 (23)                   | 7 (4)             | 18(18)                     | 9 (6)            |  |
| ≥90–99 cm (male)    | 27 (18)                   | 2 (2)             | 12(12)                     | 13 (9)           |  |
| ≥90 cm (female)     | 28 (18)                   | 17 (11)           | 6 (4)                      | 5 (2)            |  |
| ≥100 cm (male)      | 7 (5)                     | 4 (3)             | 2(1)                       | 1 (1)            |  |
| Total               | 150 (100)                 | 36 (24)           | 61 (41)                    | 53 (35)          |  |
| Family history      |                           |                   |                            |                  |  |
| No                  | 103 (69)                  | 14 (9)            | 38 (26)                    | 51 (34)          |  |
| One                 | 33 (22)                   | 13 (9)            | 19 (13)                    | 1 (0.5)          |  |
| Both                | 14 (9)                    | 9 (6)             | 4(2)                       | 1 (0.5)          |  |
| Total               | 150 (100)                 | 36 (24)           | 61 (41)                    | 53 (35)          |  |
| Physical activity   |                           |                   |                            |                  |  |
| No exercise         | 13 (9)                    | 10 (7)            | 2(1)                       | 1 (0.5)          |  |
| Mild exercise       | 46 (31)                   | 20 (13)           | 19 (13)                    | 7 (4.5)          |  |
| Moderate exercise   | 81 (54)                   | 5 (3)             | 39 (26)                    | 37 (25)          |  |
| Vigorous exercise   | 10 (6)                    | 1 (1)             | 1 (1)                      | 8 (5)            |  |
| Total               | 150 (100)                 | 36 (24)           | 61 (41)                    | 53 (35)          |  |

Table 4: Association of characteristics among study subjects with IDRS (n=150).

|                             | No of study               | Indian diabe          | Indian diabetic risk score |                      |           |
|-----------------------------|---------------------------|-----------------------|----------------------------|----------------------|-----------|
| Variables                   | No. of study subjects (%) | ≥ 60 high<br>risk (%) | 30 to 50 moderate risk (%) | < 30 low risk<br>(%) | P value   |
| Gender                      |                           |                       |                            |                      |           |
| Male                        | 49 (33)                   | 6 (4)                 | 20 (14)                    | 23 (15)              |           |
| Female                      | 101 (67)                  | 30 (20)               | 41 (27)                    | 30 (20)              | 0.030741  |
| Total                       | 150 (100)                 | 36 (24)               | 61 (41)                    | 53 (35)              |           |
| Chi square value $(\chi^2)$ | 6.9643                    |                       | df-2                       |                      |           |
| Literacy status             |                           |                       |                            |                      |           |
| Illiterate                  | 68 (45)                   | 28 (19)               | 25 (1)                     | 15 (10)              |           |
| Literate                    | 82 (55)                   | 8 (5)                 | 36 (40)                    | 38 (25)              | 0.000017  |
| Total                       | 150 (100)                 | 36 (24)               | 61 (41)                    | 53 (35)              |           |
| Chi square value $(\chi^2)$ | 21.9605                   |                       | df-2                       |                      |           |
| Body mass index             |                           |                       |                            |                      |           |
| <18.5                       | 8 (5)                     | 1 (1)                 | 3 (2)                      | 4 (3)                |           |
| 18.5-22.99                  | 52 (35)                   | 3 (2)                 | 17 (11)                    | 32 21)               |           |
| 23-24.99                    | 23 (16)                   | 3 (2)                 | 18 (12)                    | 2 (2)                | < 0.00001 |
| >25                         | 67 (44)                   | 29 (19)               | 23 (16)                    | 15 (9)               | _         |
| Total                       | 150 (100)                 | 36 (24)               | 61 (41)                    | 53 (35)              |           |
| Chi square value $(\chi^2)$ | 47.0514                   |                       | df-6                       |                      | _         |

As shown in Table 3, out of 101 females 39 (26%) females had waist circumference <80 cm, 34 (23%) had between  $\geq$ 80–89 cm and 28 (18%) had  $\geq$ 90 cm. Out of 49

males 15 (10%) females had waist circumference <90 cm, 27 (18%) had between  $\geq$ 90–99cm and 7 (5%) had  $\geq$ 100 cm. Mean waist circumference for females was

 $82.63\pm9.3$  cm, for males was  $92.81\pm9$  cm. 47 (31%) out of 150 had a positive family history. 13 (9%) subjects did no physical activity, 46 (31%), 81 (54%) and 10 (6%) subjects did mild, moderate and vigorous physical activity respectively.

As shown in Table 4, on applying chi-square test, statistical significant difference was found between IDRS and gender, literacy status, BMI (p<0.0000l).

#### DISCUSSION

In this study, we used a simplified IDRS for identifying newly diagnosed diabetic subjects in our country. This is of great significance as use of such scoring system could prove to be a cost-effective tool for screening of diabetes. Further, use of such a risk score would be of great help in developing countries like India where there is a marked explosion of diabetes and over half of the diabetic cases remain undiagnosed.

Mean age in our study population was  $41.44\pm15.5$  years, 49 (37%) were males and 101 (63%) were females. Comparing with a study conducted by Stanley et al, mean age for population was  $56.1\pm17.5$ , 60 (39%) were males and 94 (61%) were females which is similar to our study. 49 (37%) were males, 101 (63%) were females, 68 (45%) were illiterate which was similar to a study reported by Brinda et al, 68 (67.3%) were females and 33 (32.7%) were males, 52.5% were illiterates. 17

In our study out of a total of 150 subjects, 24% were in high risk category,41% were in moderate risk category and 35% were in low risk category, where as in a study conducted by Stanley et al out of a total of 154 subjects, 18 (12%) were at moderate risk which is less and 132 (88%) were at high risk which is very high compared to our study. 16 Similar findings as our study were reported in a study done by Choudary et al, 46% had moderate risk, 31.5% had high risk, and 22.5% had low risk but our study had more participants at low risk followed by high risk. 18 Comparing with a study conducted by Khandhedia et al. 19 22.8% were in high risk category which is similar to our study, 66.8% were in moderate risk category which is more compared to our study and lesser proportion, 10.4% were in low risk category. A lesser proportion of low risk 8.9% was also reported in a study conducted by Joshi et al and 36.6% were at high risk and 56.6% were at moderate risk.<sup>20</sup>

Subjects at moderate risk were more, 67.7% in a study conducted by Arun et al, where-as lesser proportion of subjects were at high risk 14.9% and low risk 17.4% compared to our study.<sup>21</sup> In a study conducted by Nagalingam et al, 37% were at high risk which is more compared to our study, 45% were at moderate risk which is similar to our study and lesser proportion 18% were at low risk.<sup>22</sup> In a study conducted by Reshma et al high risk for diabetes was 36.55%, 54.6% of participants were at

moderate risk and lesser proportion 8.9% of participants were at low risk compared to our study.  $^{23}$ 

A study conducted in an Urban Resettlement Colony of Delhi by reported a lower proportion 5.3% of low risk and 94.6% of the individuals with moderate and high risk. A study conducted in Urban Poor South Indian population by Oruganti et al lesser proportion of participants were at low risk 6%, 64% had moderate risk, and a similar proportion, 30% were at high risk where as 2.80% were in low risk, 28.40% in moderate risk and 68.80% were in high risk group in a study conducted by Nandeshwar et al. Study done by Brahmbhatt et al reported 33.8% in high risk, similar proportion 57.2% in moderate risk and 9.0% in low risk. Madhavi et al reported 21.5%, 52.8%, 19.9% of the individuals in high, moderate, and low risk group respectively which is similar to our study. The proportion 57.2%

#### **CONCLUSION**

This study provides the use of IDRS for identifying subjects who are at risk for developing diabetes so that proper intervention can be carried out at the earliest to reduce the burden of diabetes. IDRS is a cost-efficient and practical way to identify individuals at high risk for Diabetes in the general population.

#### **Recommendations**

We recommend that every individual above 20 years should be assessed for the risk of developing diabetes by calculating the IDRS. Development of suitable primary preventive approaches, including lifestyle and dietary modifications are recommended for the moderate risk participants, fasting and postprandial blood sugar levels for high-risk participants.

## **ACKNOWLEDGEMENTS**

We are thankful to all the post graduates of Department of Community Medicine, interns and health workers for their co-operation in undertaking this study.

Funding: No funding sources Conflict of interest: None declared

Ethical approval: The study was approved by the

Institutional Ethics Committee

### REFERENCES

- World Health Organization, World Health Organization, World Health Day 2016: Diabetes Published on July 13, 2017; Available at: http://www.searo.who.int/india/mediacentre/events/ 2016/en/. Accessed on 13 March 2019.
- World Health Organization, World Health Organization, World Diabetes Day; 2018. Available at: Https://www.who.int/diabetes/world-diabetesday-2018en/. Accessed on 11 February 2019.

- 3. Chao NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-81.
- 4. Dudeja P, Singh G, Gadekar T, Mukherji S. Performance of Indian Diabetes Risk Score (IDRS) as screening tool for diabetes in an urban slum. Med J Armed Forces India. 2017;73(2):123-8.
- 5. Wilson JM, Jungner G. World Health Organization. Principles and Practice of Screening for Disease. Public Health Paper. 1968;34.
- 6. Kahn R, Alperin P, Eddy D. Age at initiation and frequency of screening to detect type 2 diabetes: a cost-effectiveness analysis. Lancet. 2010;23(375):1365-74.
- 7. Mohan V, Deepa R, Deepa M, Somannavar S, Datta M. A simplified Indian Diabetes Risk Score for screening for undiagnosed diabetic subjects. J Assoc Physicians India. 2005;53:759-63.
- Deepa M, Pradeepa R, Rema R, Mohan A, Deepa R, Shanthirani S, et al. The Chennai Urban Rural Epidemiology Study (CURES) - Study Design and Methodology (Urban Component) (CURES-1). J Assoc Physicians India. 2003;51:863-70.
- 9. World Health Organization, Global report on Diabetes 2016; Available at: https://www.who.int/iris/bitstream/handle/10665/204871/9789241565257\_eng.pdf;jsessionid=32457E37CACA8893F03A74AAA9BF8481?sequence=1. Accessed on 1 March 2019.
- Pradeepa R, Anjana RM, Shashank R, Mahanta J, Narain K, Das HK, et al. Prevalence of diabetes and prediabetes in 15 states of India: results from the ICMR-INDIAB population-based cross-sectional study. Lancet Diabetes Endocrinol. 2017;5:585–96.
- 11. Rao CR, Kamath VG, Shetty A, Kamath A. A study on the prevalence of type 2 diabetes in coastal Karnataka. Int J Diabetes Dev Ctries. 2010;30(2):80-5.
- 12. Shah B. Development of sentinel health monitoring centers for surveillance of risk factors of non-communicable diseases in India (April 2003 to March 2005). Collated results of six centers. New Delhi: Division of Non-communicable Diseases, Indian Council of Medical Research; 2005. Available at: http://lwww.who.intlchplstepsIndia STEPSReport\_6Centers.pdf. Accessed on 22 February 2019.
- Madhavi P, Madhavi KVP. Screening for undiagnosed diabetic subjects using a simplified Indian diabetes risk score [IDRS] in Khammam urban. J Evid Based Med Healthcare. 2016; 3(56):2876-9.
- 14. Ahmad J, Masoodi MA, Ashraf M, Rashid R, Ahmad R, Ahmad A, et al. Prevalence of diabetes mellitus and its risk factors in age group of 20 years and above in Kashmir, India. Al Ameen J Med Sci. 2011;4(1):38-44.
- 15. Census of India, 2011. Census terms. Available at:

- censusindia.gov.in/Data\_Products/Library/Indian\_perceptive\_link/Census\_Terms\_link/censusterms.html. Accessed on 20 April 2019.
- 16. The International classification of underweight, overweight and BMI source: Adapted from WHO,1995, WHO,2000 and WHO, 2004. Available at: https://www.researchgate.net/figure/The-Internat ional-Classification-of-adult-underweight-over weight-and-obesity-according\_tbl2\_328159901. Accessed on 11 April 2019.
- 17. Stanley JML, Elantamilan D, Mohanasundaram K, Kumaravel TS. Evaluation of Indian diabetic risk score for screening undiagnosed diabetes subjects in the community. Indian J Sci Technol. 2012;5(6):2798-99.
- 18. Brinda P, Santosh A. A study to determine the hidden part of the iceberg of diabetes, using Indian diabetes risk score as a screening tool in rural population of Bangalore, Karnataka, India. Int J Community Med Public Health. 2016;3(11):3076-80.
- 19. Chowdhury R, Mukherjee A, Saibendu LK. A study on distribution and determinants of Indian diabetic risk score (IDRS) among rural Population of West Bengal. Natl J Med Res. 2012;2:282-7.
- 20. Suraj AK, Arunkumar I, Sumit U. A study on assessment of risk of developing diabetes using IDRS (Indian Diabetes Risk Score) in the urban area of Jamnagar city. Sch J App Med Sci. 2015;3(6C):2358-60.
- 21. Joshi S, Kharche JS, Godbole G, Ashok P, Borle P, Vaidya SM. Assessment of Indian Diabetes Risk Score in Pune urban population. IJAR. 2017;7(5):73-4.
- 22. Arun A, Srivastava JP, Gupta P, Prakash D, Sachan B, Zaidi ZH. Indian diabetes risk score (IDRS), a strong predictor of diabetes mellitus: A cross sectional study among urban and rural population of Lucknow. IJAR. 2015;1(7):135-8.
- 23. Nagalingam S, Sundramoorthy K, Arumugam B. Screening for diabetes using Indian diabetes risk score. IJAM. 2017;3(2):415-8.
- 24. Reshma PS, Jayashree S. Assessment of risk of type 2 diabetes using the Indian Diabetes Risk Score in an urban slum of Pune, Maharashtra, India: a cross-sectional study. WHO SEAJPH. 2016;5(1):53-61.
- 25. Acharya AS, Singh A, Dhiman B. Assessment of Diabetes Risk in an Adult Population using Indian Diabetic Risk Score in an Urban Resettlement colony of Delhi. J Assoc Physicians India. 2017;65:46-51.
- Oruganti A, Kavi A, Walwekar PR. Risk of developing diabetes mellitus among urban poor south indians using IDRS. J Family Med Prim Care. 2019;8:487-92.
- 27. Nandeshwar S, Jamra V, Pal DK. Indian Diabetic Risk Score for Screening of Undiagnosed Diabetic subjects of Bhopal city. Natl J Community Med. 2010,1(2):176-7.

28. Brahmbhatt KR, Chakraborty T, Gopal C, Shwethashree M, Madappady S, Sowndarya TA, et al. Assessment of risk of type 2 diabetes using simplified Indian Diabetes Risk Score – Community-based cross-sectional study. Int J Med Sci Public Health 2016;5.

Cite this article as: Shaik NN, Jaswanth SM, Manjunatha S. Assessment of risk of developing diabetes using Indian diabetes risk score in the urban field practice area of Rajarajeswari Medical College and Hospital, Bangalore. Int J Community Med Public Health 2020;7:170-6.