

Original Research Article

DOI: <http://dx.doi.org/10.18203/2394-6040.ijcmph20192582>

Low birth weight and its sociodemographic correlates: a descriptive study from medical college hospital, Maharashtra

Dnyaneshwar Digole¹, A. S. Nagaonkar², Anant A. Takalkar^{1*}

Department of Community Medicine, ¹Maharashtra Inst of Medical Sciences and Research (MIMSR) Medical College, ²Government Medical College, Latur, Maharashtra, India

Received: 14 May 2019

Revised: 30 May 2019

Accepted: 31 May 2019

***Correspondence:**

Dr. Anant A. Takalkar,

E-mail: ananttakalkarpsm@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Low birth weight is one of the most serious challenges in maternal and child health in both developed and developing countries. According to a UNICEF report about 28 per cent of babies born in India are low birth weight. Present hospital based study was undertaken to estimate the proportion of babies with low birth weight.

Methods: The present hospital based descriptive study was conducted at Swami Ramanand Teerth Rural Govt. Medical College and Hospital. The data collection was done during 1st March 2012 to 28th February 2013. All deliveries occurring on alternate days were included in the study which comes to, 1154 deliveries.

Results: Out of total 1154 live full term new borns; 279 (24.18%) were low birth weight babies. The percentage of low birth weight babies was more in mothers from rural area 243 (27.46%). Highest percentage (45.33%) of low birth weight babies was seen in non agricultural laborer. Higher percentage of low birth weight babies (26.18%) was observed among mothers belonging to joint family. Highest percentage (28.61%) of low birth weight babies was observed in class V socioeconomic status.

Conclusions: Baby birth weight has significant association with place of residence, mothers occupation, fathers occupation, socioeconomic status of family ($p < 0.05$).

Keywords: Low birth weight, Sociodemography, Maharashtra

INTRODUCTION

Low birth weight is one of the most serious challenges in maternal and child health in both developed and developing countries. Its public health significance may be ascribed to numerous factors like its high incidence, its association with mental retardation and high risk of perinatal and infant mortality and morbidity, human wastage and suffering, the very high cost of special care and intensive care unit and its association with socioeconomic underdevelopment.¹

By International agreement, low birth weight has been defined as a birth weight of less than 2.5 kg (up to and including 2499 grams) the measurement being taken preferably within the first hour of life, before significant weight loss has occurred.¹

According to a UNICEF report, about 28 per cent of babies born in India are low birth weight.² In Maharashtra, over 28% of newborns are born with low birth weight.³ Present hospital based study was undertaken to estimate the proportion of babies with low birth weight.

METHODS

The present hospital based descriptive study was conducted at Swami Ramanand Teerth Rural Govt. Medical College and Hospital. The data collection was done during 1st March 2012 to 28th February 2013. The study subjects comprised of postnatal mothers having full term normal delivery with single ton live born baby delivered during the study period. Multiple births, preterm births, still births and those PNC cases who did not give consent for study were excluded.

The sample size was calculated by using the formula $n=4pq/L^2$.⁴

So, based on national incidence of low birth weight 28% sample size at 95% confidence level with 10% allowable error will be 1029. Present study being hospital based, 50% of the deliveries occurring during the study period were included. Therefore all deliveries occurring on alternate days were included in the study which comes to, 1154 deliveries.

Approval form the Institutional Ethical Committee (IEC) was taken before the study. Investigator himself visited PNC ward on alternate days during study period, by interviewing and examining mothers, data was collected in predesigned pretested proforma. Also available record of the mothers including antenatal record was scrutinized.

By international agreement, low birth weight has been defined as a birth weight less than 2.5 kg (up to and including 2499 grams), the measurement being taken preferably within the first hour of life, before significant weight loss has occurred.¹

Data thus collected was entered in MS excel sheet. Statistical analysis was done by using percentages and Chi square test. Open Epi software was used for calculation of Chi square test and p-value.

RESULTS

Out of total 1154 live full term new borns; 279 (24.18%) were low birth weight babies whereas 875 (75.82%) were normal birth weight babies. In the present study the proportion of low birth weight babies was 24.18%.

Table 1: Distribution of new borns according to birth weight.

Birth weight	Number of new borns	Percentage (%)
New borns with normal birth weight	875	75.82
New borns with low birth weight	279	24.18
Total	1154	100

Maximum number of mothers i.e. 885 belonged to rural area than urban area i.e. 269. The percentage of low birth weight babies was more in mothers from rural area 243 (27.46%) than urban 36 (13.38%). Highly significant association was observed between place of residence and birth weight of baby ($p<0.001$).

Table 2: Distribution of new borns according to birth weight and place of residence.

Place of residence	Normal birth weight	Low birth weight	Total
	N (%)	N (%)	N (%)
Rural	642 (72.54)	243 (27.46)	885 (100)
Urban	233 (86.62)	36 (13.38)	269 (100)
Total	875 (75.82)	279 (24.18)	1154 (100)

Figures in parenthesis indicate row percentage; $X^2=22.29$, $Df=1$, $p<0.001$.

Out of 1154 mothers, maximum number of mothers i.e. 669 was house wives followed by 302 agricultural laborers, 150 non agricultural laborers, 22 were in service and 11 were involved in other occupations.

Table 3: Distribution of new borns according to birth weight and occupation of mother.

Occupation of mother	Normal birth weight	Low birth weight	Total
	N (%)	N (%)	N (%)
Housewife	546 (81.61)	123 (18.39)	669 (100)
Agricultural laborer	219 (72.52)	83 (27.48)	302 (100)
Non-agricultural laborer	82 (54.67)	68 (45.33)	150 (100)
Service	19 (86.36)	3 (13.64)	22 (100)
Others	9 (81.82)	2 (18.18)	11 (100)
Total	875 (75.82)	279 (24.18)	1154 (100)

Figures in parenthesis indicate row percentage; $X^2=52.21$, $Df=4$, $p<0.001$.

Highest percentage (45.33%) of low birth weight babies was seen in non agricultural laborer. While lowest percentage (13.64%) of low birth weight babies was seen in mothers having service.

Highly significant association was observed between mothers occupation and birth weight of baby ($p<0.001$).

Out of 1154 fathers, maximum number of fathers i.e. 593 were agricultural laborers followed by 338 non agricultural laborer, 119 were in own business, 74 in service and 30 were in other occupations. Highest percentage i.e. 36.69% of low birth weight babies was seen among non agricultural laborer followed by agricultural laborer i.e. 19.90% and lowest percentage i.e. 14.86% of low birth weight babies was seen among fathers having service.

Table 4: Distribution of new borns according to birth weight and occupation of father.

Occupation of father	Normal birth weight	Low birth weight	Total
	N (%)	N (%)	N (%)
Agricultural laborer	475 (80.10)	118 (19.90)	593 (100)
Non-agricultural laborer	214 (63.31)	124 (36.69)	338 (100)
Own business	98 (82.35)	21 (17.65)	119 (100)
Service	63 (85.14)	11 (14.86)	74 (100)
Others	25 (83.33)	5 (16.67)	30 (100)
Total	875 (75.82)	279 (24.18)	1154 (100)

Figures in parenthesis indicate row percentage; $\chi^2=41.97$, Df=4, $p<0.001$.

Highly significant association was observed between fathers occupation and birth weight of baby ($p<0.001$).

Out of 1154 mothers, maximum i.e. 741 mothers belonged to joint family, 374 mothers belonged to nuclear family and 39 mothers belonged to three generation family. Higher percentage of low birth weight babies (26.18%) was observed among mothers belonging to joint family and lowest percentage of low birth weight babies (15.38%) was observed among mothers belonging to three generation family.

Table 5: Distribution of new borns according to birth weight and type of family.

Type of family	Normal birth weight	Low birth weight	Total
	N (%)	N (%)	N (%)
Joint	547 (73.82)	194 (26.18)	741 (100)
Nuclear	295 (78.88)	79 (21.12)	374 (100)
Three generation	33 (84.62)	6 (15.38)	39 (100)
Total	875 (75.82)	279 (24.18)	1154 (100)

Figures in parenthesis indicate row percentage; $\chi^2=5.171$, Df=2, $p>0.05$.

No significant association could be revealed between type of family and birth weight of baby ($p>0.05$).

Out of 1154 mothers, maximum i.e. 402 mothers were belonging to class IV, 381 were to class V, 230 mothers belonged to class III, 99 mothers to class II and 42 mothers belonged to class I.

Highest percentage (28.61%) of low birth weight babies was observed in class V socioeconomic status whereas minimum percentage (14.29%) of low birth weight babies was seen in class I socioeconomic status. It is clear from

the table that the percentage of low birth weight babies increases with decrease in socioeconomic status.

Table 6: Distribution of new borns according to birth weight and socioeconomic status.

Socio-economic class	Normal birth weight	Low birth weight	Total
	N (%)	N (%)	N (%)
I	36 (85.71)	6 (14.29)	42 (100)
II	82 (82.83)	17 (17.17)	99 (100)
III	181 (78.70)	49 (21.30)	230 (100)
IV	304 (75.62)	98 (24.38)	402 (100)
V	272 (71.39)	109 (28.61)	381 (100)
Total	875 (75.82)	279 (24.18)	1154 (100)

Figures in parenthesis indicate row percentage. $\chi^2=10.02$, Df=4, $p<0.05$.

Significant association was found between socio-economic status and birth weight of baby ($p<0.05$).

DISCUSSION

In Table 1, out of total 1154 live full term new borns; 279 (24.18%) were low birth weight babies whereas 875 (75.82%) were normal birth weight babies. In the present study the proportion of low birth weight babies was 24.18%.

These findings are in confirmation with, Negi et al observed 23.8%, Ashtekar et al observed 24%, Bortane et al observed 20.5% and Metgud et al observed 22.9% proportion of low birth weight babies.⁵⁻⁸

However the present study findings are not in confirmation with, Deshmukh et al who reported 30.3% of low birth weight babies, Biswas et al 31.3% Chaudhary et al 36.2%. This variation may be because the fact that these studies were conducted in urban areas, whereas Prasad et al reported 13.3% of low birth weight babies, Velankar 45.2%, Thomare et al 18.1%. These differences may be attributed to different geographical settings.⁹⁻¹⁴

In Table 2, Maximum number of mothers i.e. 885 belonged to rural area than urban area i.e. 269. The percentage of low birth weight babies was more in mothers from rural area 243 (27.46%) than urban 36 (13.38%). Highly significant association was observed between place of residence and birth weight of baby ($p<0.001$).

These findings are in confirmation with, Nagargoje et al, Padda et al, Agarwal et al.¹⁵⁻¹⁷ However the present study findings are not in confirmation with, Bhargava et al who observed 38.1% among rural cohort had a birth weight of 2500 gm or less compared to 41.4% in urban areas, Balaji et al observed that among the mothers who had newborn

babies with low birth weight, (11.08%) belonged to rural population and 11.84% in peri-urban population, but there was no statistically significant difference.^{18,19} This difference is usually attributed to the fact that these studies were conducted in peri-urban areas usually identical to slums where the problem of low birth weight and malnutrition is comparatively more than rural area.

In Table 3, out of 1154 mothers, maximum number of others i.e. 669 was house wives followed by 302 agricultural laborers, 150 non agricultural laborer, 22 were in service and 11 were involved in other occupations.

Highest percentage (45.33%) of low birth weight babies was seen in non agricultural laborer. This is because of more physical activity, poor diet and lack of adequate rest. While lowest percentage (13.63%) of low birth weight babies was seen in mothers having service.

Highly significant association was observed between mothers occupation and birth weight of baby ($p<0.001$). The present study findings are in confirmation with Chaudhary et al, Anand and Garg, Deshpande et al, Kiran bala et al and Shah et al.^{11,20-23}

However the present study findings are not in confirmation with, Manna et al who observed the housewives delivered maximum percentage (42.5%) of low birth weight babies as compared to agricultural worker and laborer (26.8%) and which was significant, this was attributed to lower status of women in their society.²⁴

In Table 4, out of 1154 fathers, maximum number of fathers i.e. 593 were agricultural laborers followed by 338 non agricultural laborer, 119 were in own business, 74 in service and 30 were involved in other occupations.

Highest percentage i.e. 36.69% of low birth weight babies was seen among non agricultural laborer followed by agricultural laborer i.e. 19.90%. The labor class usually have low wedges, poor purchasing power, poor diet, high physical work, poor access to health services leading to various health problems one of which is low birth weight babies, whereas lowest percentage i.e. 14.86% of low birth weight babies was seen among fathers having service.

Highly significant association was observed between fathers occupation and birth weight of baby ($p<0.001$). The present study findings are not in confirmation with, Mavalankar et al who observed that husband's occupation was not significantly associated with birth weight of baby.²⁵

In Table 5, out of 1154 mothers, maximum i.e. 741 mothers belonged to joint family, 374 mothers belonged to nuclear family and 39 mothers belonged to three generation family.

Higher percentage of low birth weight babies (26.18%) was observed among mothers belonging to joint family and lowest percentage of low birth weight babies (15.38%) was observed among mothers belonging to three generation family.

No significant association could be revealed between type of family and birth weight of baby ($p>0.05$). The present study findings are in confirmation with Bortane et al, Chaudhary et al and Agarwal et al.^{7,11,17}

In Table 6, Out of 1154 mothers, maximum i.e. 402 mothers were belonging to class IV, 381 were to class V, 230 mothers belonged to class III, 99 mothers to class II and 42 mothers belonged to class I.

Highest percentage (28.61%) of low birth weight babies was observed in class V socioeconomic status whereas minimum percentage (14.29%) of low birth weight babies was seen in class I socioeconomic status. It is clear from the table that the percentage of low birth weight babies increases with decrease in socioeconomic status. Higher socioeconomic status is associated with good purchasing power, improved nutritional status, more utilization of available services, higher educational standard and increases awareness about available MCH services.

Significant association was found between socioeconomic status and birth weight of baby ($p<0.05$). The present study findings are in confirmation with, Deshmukh et al, Biswas et al, Padda et al, Anand and Garg, Gawande et al, Hirve and Ganatra, Joshi and Pai, Khatun and Rahman, and More et al.^{9,10,16,20,26-30} Present study findings are not in confirmation with Kramer who observed no increased risk of low birth weight for women of lower socioeconomic status.³¹

CONCLUSION

The percentage of low birth weight babies was more in mothers from rural area (<0.05). Highest percentage of low birth weight babies was seen in non-agricultural laborer. Baby birth weight has significant association with mothers occupation, fathers occupation, socioeconomic status of family ($p<0.05$).

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. Park K. Park's text book of Preventive and Social Medicine. Chapter 10. 22nd ed. Jabalpur: M/S Banarsi Das Bhanot; 2013: 495-592.
2. The state of the world's children 2009 Maternal and Newborn health. United Nations' Children's Fund, New York: United Nations' Children's Fund and World Health Organization; 2009

3. State of Environment Report: Maharashtra. Indira Gandhi Institute of Development Research, Mumbai.
4. Dixit JV. Principles and Practice of Biostatistics. Chapter 5. 4th ed. Jabalpur: M/S Banarsi Das Bhanot; 2009: 65.
5. Negi K, Kandpal S, Kukreti M. Epidemiological factors affecting low birth weight. JK Sci. 2006;8(1):31-4.
6. Ashtekar SV, Kulkarni MB, Sadavarte VS, Ashtekar RS. Analysis of birth weights of a rural hospital. Indian J Community Med. 2010;35(2):252-5.
7. Bortane A, Gupta S, Datta S, Mehendale A, Garg B. Determinants of low birth weight in rural Wardha. Indian J Matern Child Heal. 2012;14(2):1-9.
8. Metgud CS, Naik VA, Mallapur MD. Factors affecting birth weight of a newborn – a community based study in rural Karnataka, India. PLoS One. 2012;7(7):1-4.
9. Deshmukh JS, Motghare DD, Zodpey SP, Wadhwala SK. Low birth weight and associated maternal factors in an urban area. Indian Pediatr. 1998;35(1):33-6.
10. Biswas R, Dasgupta a, Sinha RN, Chaudhari RN, An epidemiological study of low birth weight newborns in the district of Purulia, West Bengal. Indian J Public Health. 2008;52(2):65-71.
11. Choudhary AK, Tiwari SC, Dwivedi R. Factors associated with low birth weight among newborns in an urban slum community in Bhopal. Indian J Public Health. 2013;57(1):20-3.
12. Prasad KN, Rao RS, Sujatha A. Birth weight pattern in Karnataka. Indian Pediatr. 1994;31(7):836-9.
13. Velankar D. Maternal factors contributing to low birth weight babies in an urban slum community of greater Mumbai. Bombay Hosp J. 2009;51(1):26-35.
14. Thomre PS, Borle AL, Naik JD, Rajderkar SS. Maternal Risk Factors Determining Birth Weight of Newborns: A Tertiary Care Hospital Based Study. 2012;5(1):3-8.
15. Nagargoje MM, Chaudhary SS, Deshmukh JS, Gupta SC. A case control study of risk factors for low birth weight in Nagpur city of Maharashtra. Indian J Community Health. 2011;23(1):4-7.
16. Padda P, Kishore S, Srivastava AK. Impact of biosocial characteristics of the mother on birth weight of the newborn. Indian J Community Heal. 2011;23(2):99-101.
17. Agarwal G, Sartaj A, Goel K, Kumar V, Goel P, Garg M. Maternal Risk Factors Associated with Low Birth Weight Neonates in a Tertiary Care Hospital, Northern India. J Community Med Health Educ. 2012;02(09):9-12.
18. Bhargava SK, Singh KK and Saxena BN. ICMR Task Force National Collaborative study on identification of high risk families, mothers and outcome of their offspring with particular reference to the problem of maternal nutrition, low birth weight, perinatal and infant morbidity and mortality in rural and urban slum communities. Indian Pediatr. 1991;28:1473-80.
19. Balaji K, Sankar S, Balaji N. Low Birth Weight of Newborns: Magnitude of the Problem Seen in a 100 Bed Hospital of a Rural Area in Vellore District, Tamil Nadu (India). Indian J Community Med. 2010;35(2):362-4.
20. Anand K, Garg BS. A study of factors affecting low birth weight. Indian J Community Med. 2000;25(2):57-62.
21. Deshpande JD, Phalke DB, Bangal VB, D Peeyuusha, Bhatt S. Maternal Risk Factors for Low Birth Weight Neonates: A Hospital Based Case-Control Study in Rural Area of Western Maharashtra, India. Natl J Community Med. 2011;2(3):394-8.
22. Bala K, Kumar D, Mengi V. Association of Maternal Bio-social Determinants with Birth Weight in Urban Slums of Jammu City. Jkscience.org. 2012;14(1):30-3.
23. Shah U, Parikh S, Bala D. Effect of different maternal factors on birth weight in the Odhav ward of Ahmedabad Municipal Corporation-A Case Control Study. Heal J. 2013;4(1):58-62.
24. Manna N, Sarkar J, Baur B, Basu G, Bandopadhayay L. Socio-Biological Determinants of Low Birth Weight: A Community based study from rural field practice area of medical college, Kolkata, West Bengal (India). Iosrjournals.org. 2013;4(4):33-9.
25. Mavalankar D V, Gray RH, Trivedi CR. Risk factors for preterm and term low birth weight in Ahmedabad, India. Int J Epidemiol. 1992;21(2):263-72.
26. Gavande UH, Pimpalgaonkar MS, Bentheria SH. Biosocial determinants of birth weight in rural urban Nagpur. Indian J Community Med. 1994;21(3):64-7.
27. Hirve SS, Ganatra BR. Determinants of Low Birth Weight. Community based prospective cohort study, Indian J Paediatr. 1994;31:1221-5.
28. Joshi SM, Pai NP. Effect of maternal biosocial determinants on the birth weight in a slum area greater Mumbai. Indian journal of community medicine, 2000;25(2):121-3.
29. Khatun S, Rahman M. Socio-economic determinants of low birth weight in Bangladesh: A multivariate approach. Bangladesh Med Res Counc Bull. 2009;34(3):81-6.
30. More N, Bapat U, Das S, Barnett S, Costello A, Fernandez A. Inequalities in maternity care and newborn outcomes: one –year surveillance of birth in vulnerable slum communities in Mumbai. Int J Equity Health. 2009;8(1):2-11.
31. Kramer MS. Determinant of low birth weight: Methodological assessment and met analysis. Bulletin of WHO. 1987;65(5):663-737.

Cite this article as: Digole D, Nagaonkar AS, Takalkar AA. Low birth weight and its sociodemographic correlates: a descriptive study from medical college hospital, Maharashtra. *Int J Community Med Public Health* 2019;6:2851-5.