

Original Research Article

DOI: <http://dx.doi.org/10.18203/2394-6040.ijcmph20192814>

Tuberculosis in North-East India: patient profile and treatment outcome of patient attending RNTCP

T. Kayia Priscilla Kayina*, M. Shyami Tarao, Polly Nula

Department of Community Medicine, Jawaharlal Nehru Institute of Medical Sciences, Imphal, Manipur, India

Received: 15 February 2019

Revised: 16 April 2019

Accepted: 29 May 2019

***Correspondence:**

Dr. Th Kayia Priscilla Kayina,
E-mail: priscilla.kayina@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Tuberculosis is a disease of global concern. India with its high burden of Tuberculosis, HIV and HIV-TB co-infection, this disease continue to have tremendous impact on its denizens especially the north-eastern states of the country because of its problem of HIV. It is imperative to understand every aspects of the disease for effective prevention and control.

Methods: A retrospective record study of tuberculosis units was conducted.

Results: The proportion of males was more as compared to females, with more cases seen with increasing age. Pulmonary TB was seen more among males, whereas extra-pulmonary TB was seen more among females. Favorable treatment outcome was seen in 84.7% of the population. HIV-TB Co-infection was seen 6.5% of the patients, with 46.3% having extra-pulmonary TB. Favorable treatment outcome was seen among them too.

Conclusions: More common in males, showing increasing number of patients in older age group with favourable outcomes on treatment in all categories including HIV-TB co-infection patients.

Keywords: TB, North-East, Treatment outcomes, HIV-TB

INTRODUCTION

Tuberculosis (TB) is still a disease of global concern with United Nations targeting its elimination from the world by 2030, and WHO with End TB Strategy targeting reduction in number of new cases to 80% i.e. <20/100,000 population by 2030.^{1,2} In 2015, there were 10.4 new million cases in the world according to WHO, and the epidemic was found to be more profound than previously estimated with newer data coming in from India.² India alone is responsible for one fourth of all TB burden in the world, and India along with five other countries are responsible for 60% of all global TB cases.² India, China and the Russian Federation are also responsible for 45% of all multi drug resistant TB (MDR-TB) cases, making the country with highest burden of both TB and MDR-TB. TB in India has gained further

momentum due to co-infection with HIV and now has high number of HIV-TB cases making it one of the countries with triple high burden of TB, MDR TB and HIV-TB Co-infection and taken tremendous toll on its denizens.²

In the country in 2016, there were 27.9 lac TB incident cases, with 1.47 lac incident cases of MDR TB and 0.87 lac incident cases of HIV-TB. With the world, struggling to attain set targets for achieving TB elimination, increasing drug resistant cases, and increasing HIV-TB, the need to study and research every aspect of TB has become pertinent for its control and elimination. Manipur is a state in the north eastern region of India, where the incidence of HIV is high and has been selected as one of the 100 priority districts under revised national tuberculosis control program (RNTCP) for intensifying

diagnosis of TB.⁴ Thus the study was undertaken to understand the patient profile and TB treatment outcome of patients in the state under RNTCP.

METHODS

A retrospective record study was conducted in Imphal district of Manipur, which has high literacy rate and having slightly more urban population. The district was selected randomly through simple random sampling. From the selected district, all the tuberculosis units (TU) were included in the study. The study was conducted in months of November and March 2017. Information from treatment card for all patients took treatment under RNTCP from May 2012 to February 2016 were extracted using a questionnaire. The secondary data collected were then entered into MS excel spreadsheet and analyzed using SPSS v20 are importing the data. Mean and percentages were used for descriptive statistics and tests such as chi-square and fisher's exact test were used to find out associations and p value less than 0.05 were taken as significant. Permission to conduct the study was taken from the concern district tuberculosis officer.

Permission for the conduct of the study was taken from the institutional ethics committee and from the concerned administration.

RESULTS

There were 630 tuberculosis patients registered at the TUs under RNTCP in the district. There were 61.7%

males, giving male to female patient ratio of 1.6:1, who underwent treatment. The minimum and maximum age of the study participants were 1 and 87 years respectively, with the mean age being 46.3 years (Standard Deviation-17.89). The common occupations of the patients were homemakers, government employees, farmers, self-employed individuals and students. The DOT providers in the district were mostly ASHAs, community volunteers (CV), and nurses.

Table 1: Distribution of types of patients.

Sl. no	Type of patient	Frequency (%)
1	New cases (Category I)	524 (83.1)
2	Retreatment cases (Category II)	106 (16.9)
	Total	630 (100)

In the study, 83.1% of them were new cases and 6.6% cases as failure, relapse and treatment after default as shown in Table 1. Pulmonary TB cases constitute 66.9% of the total patients, with 36.5% sputum positivity. The common extra-pulmonary tuberculosis were pleural TB which was responsible for 40% of all extra-pulmonary TB, followed by TB lymphadenitis accounting for 37.5%. The other extra-pulmonary TB seen were Koch's abdomen, Pott's spine, Skin TB etc.

The distribution of patients according in different treatment categories is given in Table 2 and 3. In category II patients, most of the patients were pulmonary cases.

Table 2: Distribution of patients belonging to category I.

Sl. no	Type of patient	Frequency (%)	Pulmonary	Extra-pulmonary
1	Pulmonary sputum positive	190 (36.5)	183	7
2	Pulmonary sputum negative	169 (32.4)	143	26
3	Extra-pulmonary	164 (30.9)		
4	New others	01 (0.2)	01	00
	Total	524 (100)	327	197

Table 3: Distribution of patients belonging to category II.

Sl. No	Type of patient	Frequency (%)	Pulmonary	Extra-pulmonary
1	Relapse	25 (23.6)	25	0
2	Failure	08 (7.5)	08	0
3	Default	09 (8.5)	09	0
4	Others	64 (60.4)	53	11
	Total	106 (100)	95	11

Patients who were undergoing treatment under RNTCP had more male patients in both types of category of treatment, and the number of older patients who underwent treatment was more as compared to lower age groups as shown in Table 4.

Pulmonary tuberculosis was more common in males and in the age group of 55 years and above, and extra-pulmonary TB was more common in females, and the difference was found to be significant as can be seen in Table 5. In the study, it was found that more TB cases were consistently reported among males in all age group except in children below 15 years of age, where females

were found to be more. Pulmonary TB was more frequent across all age groups, except in children of 14 years and the proportion of extra-pulmonary TB cases decreased

with increasing age which was found to be significant, and the same pattern followed in both male and females.

Table 4: Distribution according to category of TB treatment.

Variables	Category		P value
	I	II	
Gender	Male	304	0.0001
	Female	220	
Age groups (in years)	0-14	13	0.1*
	15-34	150	
	35-54	167	
	55 and above	194	

*Fischer's Exact Test.

Table 5: Distribution of type of TB disease according to gender and age groups.

Variables	Type of TB disease		P value
	Pulmonary	Extra-pulmonary	
Gender	Male	293	<0.001
	Female	129	
Age groups (in years)	0-14	07	<0.001*
	15-34	96	
	35-54	128	
	55 & above	191	

Table 6: Treatment outcome of the patients attending RNTCP

Treatment outcome N (%)	Cured	Treatment Completed	Default	Died	Failure
	153 (24.8)	371 (59.9)	59 (9.5)	23 (3.7)	13 (2.1)

Table 7: Association of various variables with treatment outcome.

Variables	Favorable	Unfavorable (%)	P value
Treatment	Category I	449	0.001
	Category II	75	
Gender	Male	322	0.7
	Female	202	
Type of TB disease	Pulmonary	347	0.3
	Extra-Pulmonary	177	
Age groups	0-14 Years	12	0.5*
	15-34 Years	146	
	35-54 Years	176	
	55 Years & above	190	

*Fisher's exact test.

Table 8: Treatment outcome among HIV positive patient of tuberculosis (n=41).

Cured	Treatment completed	Died	Default	Failure	Switch to Cat IV
10	28	2	1	0	0

Patient treatment outcome

The proportion of the patients with favorable outcome such as cured and treatment completed was seen 84.7% of the study population, and reported case fatality of 3.7% as seen in Table 6. Six percent of the patients were found to have missed doses during the treatment period.

Favorable outcome was seen in patients who were in category I as compared to category II was found to be significant. Although the proportion of unfavorable outcome was seen increasing with increasing age, no statistical significant association was found as shown in Table 7.

In the study, HIV was found to be positive in 6.5% (41) of the patients, although HIV status was known only among 81.1% of the patients (Table 8). Among the TB-HIV co-infected patients, 46.3% of the cases were Extra-Pulmonary TB. Good treatment outcome was seen in patients who had HIV-TB co-infection. Among the positive patients, 51.2% (21) were started on ART.

DISCUSSION

In the present study, TB was consistently found to be higher in males as compared to females and this pattern concurs to what is seen in rest of India and the world.^{5,6} This trend observed in this study may not be related to gender inequality, because women have considerably better decision power about their own health in NE India, and also female patients were found to be more in age group below 15 years of age.⁷ The proportion of older age groups suffering from TB was found to be high, and showed an increasing trend with increasing age group. Although TB burden is considered highest to be in the age group of 15-54 years, which is the productive age group, and increasing trend of the disease is seen with increasing age in this study. This concurs with studies from different parts now, which can be a result of the demographic transition.^{6,8,9}

In the study, the percentage of extra-pulmonary TB cases was 33.1%, which was higher than the country average of 18%.³ The case of higher extra-pulmonary cases could be because of higher prevalence of HIV in the state, and extra-pulmonary TB are more commonly seen in people living with HIV.¹⁰ The ratio of pulmonary to extra pulmonary was observed to have decreased with increasing age, and the pattern remain the same in both male and females. Similar results were seen in other studies.¹¹ Most common extra pulmonary TB seen was pleural TB. Similar findings were seen in studies conducted in south India, but there were studies from Southern and Northern part of India which reported lymph node TB as the commonest extra-pulmonary TB.¹²⁻¹⁴

Sputum positive pulmonary TB—36.5% (Smear positivity trend) was also found to be lower than the national average of 50%.⁴ The decrease seen could be a result of the implementation of the proper implementation of DOTS as similar findings are reported in other studies after implementation of DOTS.¹⁵⁻¹⁸

Pulmonary tuberculosis more in males and extra-pulmonary more in females which was found to be significant as seen in other studies too.¹⁹

Treatment outcome

Almost 85% favorable outcome with a case fatality of 3.7%. Favorable outcome was seen more in category I as compared to category II. This association was found to be significant and was expected. No significant favorable

outcome association were seen with gender, age or type of TB, sputum positivity although some studies have shown better outcomes in females and sputum positive patients, while adverse outcome were seen in elderly.²⁰

The percentage of defaulters, failures, and deaths were 15% which is lower than the national average.³

CONCLUSION

Study conducted only in public sector with no representation from the private sector.

The study concur with many of the known facts about tuberculosis as seen in the rest of the country, a shift observed in the age of occurrence of tuberculosis will require further research which can have an impact on the prevention and control measures. The higher prevalence of extra-pulmonary tuberculosis seen in the region which is almost double of the national average also requires further research to help understand the epidemiology of the disease in the region.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. United Nations General Assembly Resolution. Transforming our World: the 2030 Agenda for Sustainable Development. New York: United Nations Statistic Division; 2015. Available at http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E. Accessed on 3 March 2018.
2. World Health Organization. The End TB Strategy. Geneva: 2015. Available at http://www.who.int/tb/End_TB_brochure.pdf?ua=1. Accessed on 22 February 2018.
3. Department of Health & Family Welfare. TB India 2018: Annual Status Report. New Delhi: Central TB Division; 2018. Available at <https://tbcindia.gov.in/showfile.php?lid=3314>. Accessed on 27 May 2018.
4. Department of Health & Family Welfare. TB India 2017: Annual Status Report. New Delhi: Central TB Division; 2017. Available at <https://tbcindia.gov.in/WriteReadData/TB%20India%202017.pdf>. Accessed on 29 April 2017.
5. United Nations Development Program. Gender and Tuberculosis. New York: United Nations; 2015. Available at [http://www.undp.org/content/dam/undp/library/HIV-AIDS/Gender%20HIV%20and%20Health/Gender%20and%20TB%20UNDP%20Discussion%20Paper%20\(1\).pdf](http://www.undp.org/content/dam/undp/library/HIV-AIDS/Gender%20HIV%20and%20Health/Gender%20and%20TB%20UNDP%20Discussion%20Paper%20(1).pdf). Accessed on 31 May 2018.
6. Bierrenbach A. Estimating the burden of Tb by Age and Sex: Availability of data, gaps and next steps. Geneva: WHO; 2008. Available at http://www.who.int/tb/advisory_bodies/impact_measurement_taskforce

ce/meetings/tf_17march10_bg_9_estimating_tb_by_age_sex.pdf. Accessed on 10 February 2018.

- 7. International Institute for Population Sciences (IIPS) and ICF. 2017. National Family Health Survey (NFHS-4). Mumbai: IIPS; 2015-16.
- 8. Chaimowicz F. Age transition of tuberculosis incidence and mortality in Brazil. *Rev Saude Publica.* 2001;35(1):81-7.
- 9. Mori T, Leung CC. Tuberculosis in the Global ageing population. *Infect Dis Clin N Am.* 2010;24(3):751-68.
- 10. Prakasha SR, Suresh G, D'sa IP, Shetty SS, Kumar SG. Mapping the patterns and trends of extrapulmonary Tuberculosis. *J Glob Infect Dis.* 2013;5(2):54-9.
- 11. Kulchavanya E. Extrapulmonary Tuberculosis: are statistical reports accurate? *Ther Adv Infect Dis* 2014;2(2):61-70.
- 12. Ravikumar P, Priyadarshini BG. A study of extrapulmonary tuberculosis and its outcomes. *Int J Adv Med.* 2017;4(1):209-13.
- 13. Chennaveerappa PK, Siddharam SM, Halesha BR, Vittal BG, Jayashree N. Treatment outcome of tuberculosis patients registered at dots centre in a teaching hospital, south India. *Int J Biol Med Res.* 2011;2(2):487-9.
- 14. Arora VK, Gupta R. Trends of extrapulmonary tuberculosis under revised national tuberculosis control programme. A study from South Delhi. *Indian J Tuberc.* 2006;53:77-83.
- 15. Kolapan C, Subramani R, Radhakrishna R, Santha T, Wares F, Baskaran D, et al. Trends in the prevalence of pulmonary tuberculosis over a period of seven and a half years in a rural community in South India with DOTS. *Indian J Tuberc.* 2013;60:168-176.
- 16. Zhao F, Zhao Y, Liu X. Tuberculosis control in China. *Tuberculosis.* 2014;83:15-20.
- 17. Frieden TR, Fujiwara PL, Washko RM, Hamburg MA. Tuberculosis in New York City – Turning the Tide. *N Engl J Med.* 1995;333:229-33.
- 18. Tupasi TE, Radhakrishna S, Chua JA. Significant decline in the tuberculosis burden in the Philippines ten years after initiating DOTS. *Int J Tuberc Lung Dis.* 2009;13:1224-30.
- 19. Mehraj J, Khan ZY, Saeed DK, Shakoor S, Hasan R. Extrapulmonary tuberculosis among females in South Asia-gap analysis. *Int J Mycobacteriol.* 2016;5(4):392-9.
- 20. Piparva KG. Treatment outcome of tuberculosis patient on DOTS therapy for category 1 and 2 at district tuberculosis center. *Int J Pharm Sci Res.* 2017;8(1):207-12.

Cite this article as: Kayina TKP, Tarao MS, Nula P. Tuberculosis in North-East India: patient profile and treatment outcome of patient attending RNTCP. *Int J Community Med Public Health* 2019;6:2856-60.