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ABSTRACT

Medical research is aim to quantify the disease magnitude and establish association between the study variables.
Regression is the technique, which will not only find the correlation but also predict how much are the strength of
relationship between variables. This article aims, to discuss various types of regression techniques such as Linear
Regression, Multiple Regression, Logistic Regression, Meta regression and spatial regression and Regression
Imputation with assumptions and models. This article is to sensitize doctors and post-graduate medical students about

this useful analytical technique.
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INTRODUCTION

Medical Research are mostly designed to find the
relationship between the variables or to measure co
variation between them and some researcher would like
to establish the cause and effect relationship in terms of
one variable on other. So, the variables are classified as
Independent or explored variables, Dependent or
explained variables and usually denoted as X and Y. For
example age, sex, education, occupation are independent
variables where bmi, obesity, depression are dependent
variables. To find the relationship or to measure the co
variation, correlation is appropriate  technique.
Correlation is used to assess the relationship between two
or more continuous variables. It ranges from -1 to 1,
usually denoted as r and always expressed in percentages.
The scatter diagrams explain the relationship in graphical
like positive and perfect positive correlations, no
correlation, negative and perfect negative correlation.
Karl Pearson, the British biometrician developed
correlation; it is based three assumptions i.e., the

variables X and Y should be normally distributed, linear
and homogeneous. To find the strength or function of the
relationship between these variables, Regression Models
are appropriate.’

Sir  Francis Galton developed technique called
Regression', to predict or estimate the value of the
response variable from known values of one or more
independent variables.

There are many types of Regression Models available in
medical research. They are Simple Linear Regression
(SLR), Multiple Linear Regression (MLR), Logistic
Regression (LR), Nominal / Ordinal Logistic Regression.
There are also some other Regression Techniques which
are used in the field of Imputation, Systematic Reviews
and Spatial Patterns. They are Regression Imputation,
Meta Regression and Spatial Regression, Bayesian
Regression, Autoregressive Models etc.
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Simple linear regression

Simple Linear Regression is used when there is single
continuous independent variable and single continuous
response variable. It is done to know the tendency of one
variable to change with other.

Assumptions

e The observations are independent

e Variables are normally distributed

e Relationship between variables is linear
The linear Regression Model: Y =a + b X,

Where Y is Dependent Variable, X is Independent
variable, b is Slope and its calculated as, b = cov (X,y) /
var(x)

a= Y -b*X; where, a = intercept for which X = 0 the
slope b will explain that for each unit change in x, y
increase.

Example: A pediatric registrar has measured the
pulmonary anatomical dead space (in ml) and height (in
cm) of 15 children.?

HT: 110 116 124 129 131 138 142 150 153 155 156
159 164 168 174

Space: 44 31 43 45 56 79 57 56 58 92 78
64 88 112 101

Yxy = 150605, ox = 19.36 y = 66.93, x = 144.6,
b=1.03,a=-82.4 = regression liney =-82.4 + 1.03 x
Multiple linear regression model

It attempts to determine a formula that can describe how
elements in a vector of variables respond simultaneously
to changes in others. The dependent variable (Y) is
continuous variable which follows normal distribution.
Independent variables (X3, X,....x,) are both continuous
and categorical variables. Like linear regression a - is
intercept and by, b,...b, are slopes for corresponding
independent variables. Multiple linear Model is given by,
Y = a + byxy + box, +....+ by, For example, to predict
cholesterol level (YY) with predictors age (x1), sex (x,) and
weight (X3)

Here Y is continuous dependent variable follows normal
distribution, the independent variables either continuous
(age, weight) or categorical (sex). The regression line will
be Cholesterol level (Y) = a + b; (Age) + b, (Sex) + bs
(Weight).

Logistic regression model

When the response variable is binary
(Nominal/categorical), 7 (x) the probability that Y equals
one for a given value of X. the usual model is the logistic
regression model, a non-linear model with a sigmodal
shape. The change in the probability that Y equals one for
a given change in X is greatest for values of X near the
middle of its range, rather than for values at the extremes.
The error term is not normally distributed followed
binomial distribution. It can be extended to multiple
predictor variables. There are various types of logistic
regressions: Multiple logistic regression models, Ordinal
Logistic Regression etc.

The logit model derived as follows:
P(Y=1UX)=e@*®)/1+e@"™
1-P(Y=1UX)=1-{e@®@ ™/ /1+e@*™}
Odds=P/1-P=g@*™

Logit=Log Odds =Ln (P/1-P)=a+ bx

Where, a — Intercept, b — slope, b = Ln (Odds Ratio)
Example

Graft rejection status and marrow cell dose data for 68
aplastic anemia patients
Graft rejection ~ Marrow cell dose (108 cells/kg)

Here b=1.83 and a =-1.95

Table 1: Logistic regression model.

<3.0 >3.0 Total
Yes 17 4 21
No 19 28 a7
Total 36 32 68

Regression imputation

Imputation is defined as follows: to substitute missing
values with certain fabricated values. It is a process of
explicitly or implicitly substituting data for incomplete or
inconsistent items in survey records. Regression
imputation is defined as replacing the missing values with
predicted values from the estimated regression model.
This model permits more auxiliary variables to be used
and it employs a linear additive model. There are two
types of techniques to replace missing values. They are
simple linear regression model and random regression
model. Simple linear imputation estimates the missing
value by fitting a regression line. Random regression
imputation method imputes values directly from the
estimated regression line. Random residual errors can be
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added to the regression prediction to provide dispersion
about the regression line. The only difference between
the simple and random imputation method is error term.

In simple linear regression imputation for model Y on X
= Y =f + By X + ¢ ,the missing values is replaced by
the equation Y* = f; + f; X when the independent
variable has no missing values. If the independent value
has the missing value, it is calculated by X = X. Then
imput_e(31 value is calculated by using the formula Y* = ff
+ 1 X.

Random Regression Imputation imputes values directly
from the estimated regression line. Regression residual
errors can be added to the regression prediction to
provide dispersion about the regression line. This method
imputes missing value Y = Y*=Y + € where €=Y -
+ By X. if independent variable X is missing X = X. The
only difference between simple linear regression
imputation and random regression imputation is &.}
Random is better than simple. SLR imputation
underestimates the outcome values. Whereas random
regression imputation, estimates are more or less similar
to before imputation.

Meta regression model

Multiple regressions are used in primary studies to assess
the relationship between subject-level covariates and an
outcome. We can also use meta-regression in meta-
analysis to assess the relationship between study level
covariates and effect size. Meta-regression may be
performed under the fixed-effect or the random effects
model, but in most cases the latter is appropriate. In
addition to testing the impact of covariates for statistical
significance, it is also important to quantify the
magnitude of their relationship with effect size.

True effect size is the effect size in the underlying
population and is the effect size that we would observe if
the study had infinitely large sample size. Observed
effect size is the effect size that is actually observed.” The
Fixed effect model assumes that there is one true effect
size which underlies all the studies in the analysis, and
that all differences in observed effects are due to
sampling error. We denote the true effect size by theta. If
each study had an infinite sample size, then the sampling
error would be zero and the observed effect for each
study would be the same as the true effect. In plots, the
observed effects would exactly coincide with true effects.
The Random effect model assumes that the true treatment
effects in the individual studies may be different from
each other. There is no single number to estimate in the
meta analysis but a distribution of numbers. It assumes
that these different true effects are normally distributed. It
estimates the mean and standard deviation of the different
effects. However, in special cases multiple meta-
regressions that include both the fixed and random-
effects model can be used. If we use a fixed-effect model
within subgroups and also across subgroups, the analysis

is called a fixed-effects analysis. If we use a random-
effects model within subgroups and a fixed-effect model
across subgroups (the approach that we generally
advocate), the model is called a mixed-effects model. We
have the further possibility of assuming random effects
both within and across subgroups; such a model is called
a random-effects (or fully random-effects) model.

Meta regression model

Example

Colditz et al, and Berkey et al showed how meta-
regression could be used in an attempt to explain some of
the variance in treatment effects of BCG vaccine for

tuberculosis.

The data collected for Meta-analysis given below (Figure
1).

Vaccinated Control

B Total T8 Total RR InRR Vieen  Latitude

Vandiviere et al, 1973 8 2545 10 629 0.198 1621 0223 19
Ferguson & Simes, 1949 6 306 29 303 0.205 1.585 0195 55
Ha Sutherland, 1977 62 13598 248 12867 0.237 1442 0020 52
Rosenthal et a/, 1961 17 1716 65 1665 0.254 1371 0073 a2
Rosenthal et a/, 1960 3 23 1 220 0.260 1348 0415 a2
Aronson, 1948 a 123 1 139 0.411 0889 0326 aa
Stein & Aaronson, 1953 180 1541 372 1451 0.456 0.786 0007 aa
Coetz, Berjok, 1968 29 7499 as 7277  0.625 0469 0056 27

etal 1974 186 50634 141 27338 0.712 0339 0012 18

Frimodt-Moller et af 1973 33 5069 a7 5808 0.804 0218 0051 13
Comstock et al 1976 27 16913 29 17854 0.983 0017 0071 33
TB Prevention Trial, 1980 505 88391 499 88391 1.012 0012 0004 13
Comstock & Webster, 1969 S 2498 3 2341 1.562 0446 0533 33

The Fixed Effect model in Meta Regression for BCG vaccine

Fixed effect, Z-Distribution

Point Standard %% 95% Zvalue pValue
estimate eror Lower Upper

Intercept 0.34356 0.08105 0.18471 0.50242 42389 0.00002
Latitude 0.02924 0.00265 0.03444 0.02404 11.02270 0.00000

The Random Effect model in Meta Regression for BCG vaccine

Random effects, Z-Distribution

Point Standard 95% 95% Zvalue pValue

estimate error Lower Upper
Intercept 0.25954 0.23231 0.19577 0.71486 1.11724 0.26389
Latitude 0.02923 0.00673 0.04243 0.01603 434111 0.00001

Figure 1: Meta regression model.
Spatial regression model

Linear regression for spatial variables is a technique that
can be used to model the broad-scale (first-order) spatial
trend of a dataset where the outcome variable is
continuously distributed. The following are the key
assumptions behind this type of regression analysis.®

e For all values of p there must be a corresponding
value of X

e The value of p at any point is not affected by the
value of at any other point (independence).

e The relationship between p and X should be
approximately linear (linearity).
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e The variance of p about the estimated regression line
is equal for all values of X.

e  The residuals u are normally distributed with a mean
of zero (normality).

The linear regression model for spatially auto
correlated variables

The term Xg is often referred to as the mean structure,
large-scale variation, or trend, to distinguish this
variation from the variation in the residual vector that
defines the small-scale variation in the data and
determines the stochastic dependence structure or
residual autocorrelation in the data. The residual process
adjusts the model for any residual spatial variation
remaining in the data after accounting for covariate
effects. Two methods which are often used to estimate
the parameters of a semi variogram model, and
equivalently, the parameters in E(0), under the general
linear model are: iteratively reweighted generalized least
squares (IRWGLS) and maximum likelihood (ML).%’

Spatial auto regression model

A structure mirroring the time-series literature makes
wide use of autoregressive models wherein we regress
the current observation on observed values of all or, more
commonly, a subset of other observations. In time series,
the “other” observations occur in the recent past; in the
spatial setting, they occur nearby. Just as the term
autocorrelation  reflects self-correlation, the term
autoregressive reflects self-regression. Through such
regressions, we incorporate spatial similarity by treating
observations of the outcome variable at other locations as
additional covariates in the model with associated
parameters defining spatial association, rather than
building an explicit parametric model of the covariance
function of the error terms. The autoregressive model
induces a particular covariance structure for the joint
distribution of variables, but we typically do not fit the
covariance directly. Instead, the autoregressive model
itself defines this covariance for us. Simultaneous and
conditional autoregressive models are the types of spatial
auto regressive models. Spatial autoregressive models
incorporate spatial dependence through the use of spatial
proximity measures. These measures provide a flexible
modeling tool for geographical data. An alternative
approach is provided by geo statistics, where the semi
variogram based on inter-centroid distances quantifies the
spatial autocorrelation in the data. These two different
approaches, and the differences in the results obtained
with them, lead us to wonder to what extent the choice of
spatial dependence measure has on conclusions.
Conceptually, given the differences in the spatial
proximity measures, the impact of the choice of spatial
proximity measure is likely to be great, as it will result in
very different neighborhood structures and thus allow
much different interactions among the data.®’

e It is better to use any reasonable method for
modeling spatial autocorrelation than to assume that
the data are independent.

e The choice of spatial dependence model can greatly
affect both the estimates from regression models and
their standard errors. Thus, exploratory spatial
analysis is important since it can provide valuable
information concerning the spatial relationships
among the data that can be used to choose a spatial
dependence model substantiated by the data. It is
also wise to compare results from several different
spatial dependence models and to try to understand
their differences.

e Accounting for population heterogeneity in
geographically aggregated data is very important.
Many of the tools for inference with spatial data
assume second-order stationary and thus may give
misleading conclusions when applied to data based
on units with differing population sizes or with
different spatial support.

e The principle of parsimony is paramount; we should
choose the simplest model that both adequately
explains the variation in our data and facilitates an
interpretation that is consistent with our knowledge
about the people, places, and processes we are
studying.®’

Example: Rebeca Ramis Prieto et al used Bayesian
regression to predict variables of municipal mortality due
to hematological neoplasias and Muhammad NA et al
used Spatial Ordinal Logistic Regression and The
Principal Component to Predict Poverty Status of
Districts in Java Island.®

CONCLUSION

Regression models are unique technique to predict
variables. Apart from these above mentioned models,
there are also many models available in regression which
can be used in multivariate analysis such as Poisson
Regression, Bayesian regression Generalized Estimation
models and so on. This article may be the eye opener for
early stage medical researchers and students.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: Not required

REFERENCES

1. Gupta SC, Kapoor VK. Fundamentals of
Mathematical Statistics. 9" ed, Sultan Chand and
Sons.

2. Murthy S, NandaKumar BS, Shivaraj NS, Gautham
MS, Pruthvish S. Epidemiological research methods
and biostatistics lecture notes on epidemiology and
biostatistics.

International Journal of Community Medicine and Public Health | August 2016 | Vol 3 | Issue 8 Page 1984



Gladius JH et al. Int J Community Med Public Health. 2016 Aug;3(8):1981-1985

Jinn JH. The effect of different imputation methods
on analytical statistics of simple linear regression.
Interstat. 2002.

Borens MT, Hedges LV, Higgins JPT, Rothstein
HR. Introduction to Meta-Analysis. 2009 John
Wiley and Sons, Ltd; ISBN:978-0-470-05724-7.
Modeling Spatial Ordinal Logistic Regression and
The Principal Component to Predict Poverty Status
of Districts. In: Java Island Muhammad NA, Tuti

Purwaningsih SS. International Journal of Statistics
and Applications. 2013;3(1):1-8

Lance AW, Carol AG. Applied Spatial Statistics for
Public Health Data. John Wiley and Sons inc.
Gaetan C, Guyon X. Spatial Statistics and
Modeling. Springer publication.

Cite this article as: Gladius JH, Das B. Regression
technique: model to predict causal relationship
between variables. Int J Community Med Public
Health 2016:3:1981-5.

International Journal of Community Medicine and Public Health | August 2016 | Vol 3 | Issue 8 Page 1985




