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INTRODUCTION 

Medical Research are mostly designed to find the 

relationship between the variables or to measure co 

variation between them and some researcher would like 

to establish the cause and effect relationship in terms of 

one variable on other. So, the variables are classified as 

Independent or explored variables, Dependent or 

explained variables and usually denoted as X and Y. For 

example age, sex, education, occupation are independent  

variables where bmi, obesity, depression are dependent 

variables. To find the relationship or to measure the co 

variation, correlation is appropriate technique. 

Correlation is used to assess the relationship between two 

or more continuous variables. It ranges from -1 to 1, 

usually denoted as r and always expressed in percentages. 

The scatter diagrams explain the relationship in graphical 

like positive and perfect positive correlations, no 

correlation, negative and perfect negative correlation. 

Karl Pearson, the British biometrician developed 

correlation; it is based three assumptions i.e., the 

variables X and Y should be normally distributed, linear 

and homogeneous. To find the strength or function of the 

relationship between these variables, Regression Models 

are appropriate.1 

Sir Francis Galton developed technique called 

Regression1, to predict or estimate the value of the 

response variable from known values of one or more 

independent variables.  

There are many types of Regression Models available in 

medical research. They are Simple Linear Regression 

(SLR), Multiple Linear Regression (MLR), Logistic 

Regression (LR), Nominal / Ordinal Logistic Regression. 

There are also some other Regression Techniques which 

are used in the field of Imputation, Systematic Reviews 

and Spatial Patterns. They are Regression Imputation, 

Meta Regression and Spatial Regression, Bayesian 

Regression, Autoregressive Models etc. 

 

ABSTRACT 

 

Medical research is aim to quantify the disease magnitude and establish association between the study variables. 

Regression is the technique, which will not only find the correlation but also predict how much are the strength of 

relationship between variables.  This article aims, to discuss various types of regression techniques such as Linear 

Regression, Multiple Regression, Logistic Regression, Meta regression and spatial regression and Regression 

Imputation with assumptions and models. This article is to sensitize doctors and post-graduate medical students about 

this useful analytical technique.  
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Simple linear regression 

Simple Linear Regression is used when there is single 

continuous independent variable and single continuous 

response variable. It is done to know the tendency of one 

variable to change with other.  

Assumptions   

 The observations are independent 

 Variables are normally distributed 

 Relationship between variables is linear 

The linear Regression Model: Y = a + b X, 

Where Y is Dependent Variable, X is Independent 

variable, b is Slope and its calculated as,  b = cov (x,y) / 

var(x)   

a = Y - b * X; where, a = intercept for which X = 0 the 

slope b will explain that for each unit change in x, y 

increase.  

Example: A pediatric registrar has measured the 

pulmonary anatomical dead space (in ml) and height (in 

cm) of 15 children.2  

HT: 110  116  124  129  131 138 142 150 153 155 156 

159 164 168 174 

Space:   44   31  43  45   56    79   57   56   58   92   78   

64  88 112 101   

∑xy = 150605, x = 19.36 y = 66.93, x = 144.6,  

b=1.03, a = -82.4   regression line y = -82.4 + 1.03 x 

Multiple linear regression model 

It attempts to determine a formula that can describe how 

elements in a vector of variables respond simultaneously 

to changes in others. The dependent variable (Y) is 

continuous variable which follows normal distribution. 

Independent variables (x1, x2….xn) are both continuous 

and categorical variables. Like linear regression a - is 

intercept and b1, b2…bn are slopes for corresponding 

independent variables. Multiple linear Model is given by, 

Y = a + b1x1 + b2x2 +….+ bnxn. For example, to predict 

cholesterol level (Y) with predictors age (x1), sex (x2) and 

weight (x3) 

Here Y is continuous dependent variable follows normal 

distribution, the independent variables either continuous 

(age, weight) or categorical (sex). The regression line will 

be Cholesterol level (Y) = a + b1 (Age) + b2 (Sex) + b3 

(Weight).    

Logistic regression model 

When the response variable is binary 

(Nominal/categorical),  (x) the probability that Y equals 

one for a given value of X. the usual model is the logistic 

regression model, a non-linear model with a sigmodal 

shape. The change in the probability that Y equals one for 

a given change in X is greatest for values of X near the 

middle of its range, rather than for values at the extremes. 

The error term is not normally distributed followed 

binomial distribution. It can be extended to multiple 

predictor variables. There are various types of logistic 

regressions: Multiple logistic regression models, Ordinal 

Logistic Regression etc.  

The logit model derived as follows:  

P (Y = 1/X) = e (a + bx) / 1 + e (a + bx) 

1 - P (Y = 1/X) = 1 – {e (a + bx) / 1 + e (a + bx)} 

Odds = P / 1 - P = e (a + bx)    

Logit = Log Odds = Ln (P / 1 – P) = a + bx 

Where, a – Intercept, b – slope, b = Ln (Odds Ratio)  

Example  

Graft rejection status and marrow cell dose data for 68 

aplastic anemia patients2 

Graft rejection  Marrow cell dose (108 cells/kg)  

Here b = 1.83 and a =-1.95  

Table 1: Logistic regression model. 

 

Regression imputation 

Imputation is defined as follows: to substitute missing 

values with certain fabricated values. It is a process of 

explicitly or implicitly substituting data for incomplete or 

inconsistent items in survey records. Regression 

imputation is defined as replacing the missing values with 

predicted values from the estimated regression model. 

This model permits more auxiliary variables to be used 

and it employs a linear additive model. There are two 

types of techniques to replace missing values. They are 

simple linear regression model and random regression 

model. Simple linear imputation estimates the missing 

value by fitting a regression line. Random regression 

imputation method imputes values directly from the 

estimated regression line. Random residual errors can be 

 < 3.0 >3.0 Total 

Yes 17 4 21 

No 19 28 47 

Total 36 32 68 
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added to the regression prediction to provide dispersion 

about the regression line. The only difference between 

the simple and random imputation method is error term. 

In simple linear regression imputation for model Y on X 

    =   0 +   1 X + ε ,the mi  i       e  i   e    e  by 

the e   ti      =    0 +   1 X  he  the i  e e  e t 

   i b e h      mi  i       e .    the i  e e  e t     e 

h   the mi  i       e, it i         te  by X  = X .  he  

im  te      e i         te  by   i   the    m       =    0 

+   1 X  .
3 

Random Regression Imputation imputes values directly 

from the estimated regression line. Regression residual 

errors can be added to the regression prediction to 

provide dispersion about the regression line. This method 

imputes missing value Y =     =   + ε   he e ε  =   -    0 

+   1 X. i  i  e e  e t    i b e X i  mi  i   X   = X .  he 

only difference between simple linear regression 

im  t ti            m  e  e  i   im  t ti   i  ε.3 

Random is better than simple. SLR imputation 

underestimates the outcome values. Whereas random 

regression imputation, estimates are more or less similar 

to before imputation. 

Meta regression model 

Multiple regressions are used in primary studies to assess 

the relationship between subject-level covariates and an 

outcome. We can also use meta-regression in meta-

analysis to assess the relationship between study level 

covariates and effect size. Meta-regression may be 

performed under the fixed-effect or the random effects 

model, but in most cases the latter is appropriate. In 

addition to testing the impact of covariates for statistical 

significance, it is also important to quantify the 

magnitude of their relationship with effect size.  

True effect size is the effect size in the underlying 

population and is the effect size that we would observe if 

the study had infinitely large sample size. Observed 

effect size is the effect size that is actually observed.4 The 

Fixed effect model assumes that there is one true effect 

size which underlies all the studies in the analysis, and 

that all differences in observed effects are due to 

sampling error. We denote the true effect size by theta. If 

each study had an infinite sample size, then the sampling 

error would be zero and the observed effect for each 

study would be the same as the true effect. In plots, the 

observed effects would exactly coincide with true effects. 

The Random effect model assumes that the true treatment 

effects in the individual studies may be different from 

each other. There is no single number to estimate in the 

meta analysis but a distribution of numbers. It assumes 

that these different true effects are normally distributed. It 

estimates the mean and standard deviation of the different 

effects. However, in special cases multiple meta-

regressions that include both the fixed and random-

effects model can be used. If we use a fixed-effect model 

within subgroups and also across subgroups, the analysis 

is called a fixed-effects analysis. If we use a random-

effects model within subgroups and a fixed-effect model 

across subgroups (the approach that we generally 

advocate), the model is called a mixed-effects model. We 

have the further possibility of assuming random effects 

both within and across subgroups; such a model is called 

a random-effects (or fully random-effects) model. 

Meta regression model  

Example  

Colditz et al, and Berkey et al showed how meta-

regression could be used in an attempt to explain some of 

the variance in treatment effects of BCG vaccine for 

tuberculosis. 

The data collected for Meta-analysis given below (Figure 

1).4 

 

Figure 1: Meta regression model. 

Spatial regression model 

Linear regression for spatial variables is a technique that 

can be used to model the broad-scale (first-order) spatial 

trend of a dataset where the outcome variable is 

continuously distributed. The following are the key 

assumptions behind this type of regression analysis.6 

 For all values of  there must be a corresponding 

value of X 

 The value of  at any point is not affected by the 

value of at any other point (independence). 

 The relationship between  and X should be 

approximately linear (linearity). 
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 The variance of  about the estimated regression line 

is equal for all values of X. 

 The residuals  are normally distributed with a mean 

of zero (normality). 

The linear regression model for spatially auto 

correlated variables 

The term Xβ is often referred to as the mean structure, 

large-scale variation, or trend, to distinguish this 

variation from the variation in the residual vector that 

defines the small-scale variation in the data and 

determines the stochastic dependence structure or 

residual autocorrelation in the data. The residual process 

adjusts the model for any residual spatial variation 

remaining in the data after accounting for covariate 

effects. Two methods which are often used to estimate 

the parameters of a semi variogram model, and 

equivalently, the parameters in E(θ), under the general 

linear model are: iteratively reweighted generalized least 

squares (IRWGLS) and maximum likelihood (ML).6,7 

Spatial auto regression model 

A structure mirroring the time-series literature makes 

wide use of autoregressive models wherein we regress 

the current observation on observed values of all or, more 

commonly, a subset of other observations. In time series, 

the “ the ”  b e   ti          i  the  e e t    t; i  the 

spatial setting, they occur nearby. Just as the term 

autocorrelation reflects self-correlation, the term 

autoregressive reflects self-regression. Through such 

regressions, we incorporate spatial similarity by treating 

observations of the outcome variable at other locations as 

additional covariates in the model with associated 

parameters defining spatial association, rather than 

building an explicit parametric model of the covariance 

function of the error terms. The autoregressive model 

induces a particular covariance structure for the joint 

distribution of variables, but we typically do not fit the 

covariance directly. Instead, the autoregressive model 

itself defines this covariance for us. Simultaneous and 

conditional autoregressive models are the types of spatial 

auto regressive models. Spatial autoregressive models 

incorporate spatial dependence through the use of spatial 

proximity measures. These measures provide a flexible 

modeling tool for geographical data. An alternative 

approach is provided by geo statistics, where the semi 

variogram based on inter-centroid distances quantifies the 

spatial autocorrelation in the data. These two different 

approaches, and the differences in the results obtained 

with them, lead us to wonder to what extent the choice of 

spatial dependence measure has on conclusions. 

Conceptually, given the differences in the spatial 

proximity measures, the impact of the choice of spatial 

proximity measure is likely to be great, as it will result in 

very different neighborhood structures and thus allow 

much different interactions among the data.6,7 

 It is better to use any reasonable method for 

modeling spatial autocorrelation than to assume that 

the data are independent. 

 The choice of spatial dependence model can greatly 

affect both the estimates from regression models and 

their standard errors. Thus, exploratory spatial 

analysis is important since it can provide valuable 

information concerning the spatial relationships 

among the data that can be used to choose a spatial 

dependence model substantiated by the data. It is 

also wise to compare results from several different 

spatial dependence models and to try to understand 

their differences. 

 Accounting for population heterogeneity in 

geographically aggregated data is very important. 

Many of the tools for inference with spatial data 

assume second-order stationary and thus may give 

misleading conclusions when applied to data based 

on units with differing population sizes or with 

different spatial support. 

 The principle of parsimony is paramount; we should 

choose the simplest model that both adequately 

explains the variation in our data and facilitates an 

interpretation that is consistent with our knowledge 

about the people, places, and processes we are 

studying.6,7 

Example: Rebeca Ramis Prieto et al used Bayesian 

regression to predict variables of municipal mortality due 

to hematological neoplasias and Muhammad NA et al 

used Spatial Ordinal Logistic Regression and The 

Principal Component to Predict Poverty Status of 

Districts in Java Island.5 

CONCLUSION  

Regression models are unique technique to predict 

variables. Apart from these above mentioned models, 

there are also many models available in regression which 

can be used in multivariate analysis such as Poisson 

Regression, Bayesian regression Generalized Estimation 

models and so on. This article may be the eye opener for 

early stage medical researchers and students. 
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