pISSN 2394-6032 | eISSN 2394-6040

Original Research Article

DOI: http://dx.doi.org/10.18203/2394-6040.ijcmph20173837

A study on prevalence of anaemia and various factors influencing anaemia among adolescent girls in urban and rural field practice areas of Osmania Medical College

Gurram Sudha Rani¹, Bollampalli Baburao²*

Department of Community Medicine, ¹Assistant Professor, Kakatiya Medical College, Warangal, ²Associate Professor, Osmania Medical College, Hyderabad, Telangana, India

Received: 01 July 2017 Revised: 30 July 2017 Accepted: 31 July 2017

*Correspondence: Dr. Bollampalli Baburao, E-mail: baburao33@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Adolescents in India represent over 1/5th (22.3%) of total population. Iron deficiency anaemia is the commonest medical disorder and is a problem of serious public health condition with epidemic proportions. It has significant impact on physical, psychological development, immunity, behaviour, and work performance. The objectives of the study were to determine prevalence of anaemia among adolescent girls and to study the various factors associated with anaemia in urban and rural field practice areas of Osmania Medical College

Methods: A total of 760 adolescent girls (380 in each area) were interviewed and examined. BMI was calculated with anthropometric calculator available in WHO anthroplus. Method of haemoglobin estimation is by cyneametheheamoglobin. Anaemia was classified based on WHO classification.

Results: The prevalence of anaemia was 74.5% and 82.6% in rural and urban area respectively. In rural area, 84 (87.5%) of girls were anaemic who were menstruating more than 7 days and only 31 (45.6%) were anaemic who were menstruating less than 3 days. Majority of married subjects were anaemic in both urban (82.4%) and rural (95.8%) area. Religion did not have significant relation with anaemia. Prevalence of anaemia was more in lower and lower middle class. In the present study majority of thin girls were anaemic in both rural (97.4%) and urban (94.8%) area with significant statistical association. In present study those who were taking meat more than once a week had less percentage of anaemia 38 (36.9). Those respondents who never took green leafy vegetables have more prevalence of anaemia in both areas. All were statistically associated.

Conclusions: Anaemia which is a very serious problem in adolescent girls requires urgent action and practicable interventions

Keywords: Adolescent girls, Anaemia, Hunger scale, Body mass index, Cyneametheheamoglobin

INTRODUCTION

Adolescents in India represent over 1/5th (22.3%) of total population. Though they constitute the healthiest section of population they are considered as vulnerable group.

This is because of the rapid physical, mental and psychological changes occurring in this age, coupled with lack of proper sources of information and education from

parents, teachers and peers. In India poor nutrition and early child bearing and reproductive health complications compound the difficulties of adolescent physical development. In India 15.4% of girls are married by age 13 yrs, 33.3% by time they are 15yrs and 64.6% girls are married by age 18 yrs. In addition to the psychological immaturity of an adolescent girl, very often her body is not prepared to accommodate the early onset of child bearing. So nutritional deprivation, increased demand of

her body, excessive menstrual loss and early /frequent pregnancies, all aggravate and exacerbate anaemia and its effects.

Iron deficiency anaemia is the commonest medical disorder and is a problem of serious public health condition with epidemic proportions. It has significant impact on physical, psychological development, immunity, behaviour, and work performance.3 It is most prevalent nutritional problem in the world today effecting more than 700 million people.⁴

Since adolescence is a significant period of human growth and maturation, unique changes occur and many adult patterns are established. Following early childhood (<2 yrs), during the adolescent growth spurt the risk of iron deficiency and anaemia reappears for both boys and girls. After which subsides in boys but remains for girls because of menstrual blood loss.⁵ So, it is now viewed anaemia as FEMALE DISEASE which is causing RED alert for Indian women.

Poor nutritional status and anaemia in pregnancy have consequences that extend over generations. Girls born underweight are at risk of producing small premature infants. It becomes a vicious cycle of anaemic girls giving birth to anaemic infants and these infants will become future anaemic mothers. Anaemia is the leading cause of maternal deaths (20-40%).⁶ It is also one of the important cause of perinatal morbidity and mortality. Anaemia is the biggest cause of school dropouts in India.8

Indian government started a national anaemia prophylaxis programme in 1970 targeting pregnant and lactating women. Subsequently the programme was modified and renamed as national anaemia control programme in 1991 for control and prevention of anaemia in women of reproductive age group and preschool children.

In spite of several nutritional programmes, the prevalence of anaemia has not changed much. According to NFHS-3 (2005-06) the prevalence of anaemia in adolescents is 55.8%. The prevalence of anaemia is highest in poor adolescent girls (65-90%) and coincides with the onset of menstruation and growth.

A new strategy called 12 by 12 initiative for controlling adolescent anaemia is implemented on 25th April 2007 by GOI, WHO, UNICEF, and FOGSI collaboration. The main goal of this strategy is to achieve 12 gms of haemoglobin by 12 yrs of age by 2012. So by decreasing the prevalence of anaemia in adolescents, 20-40% of maternal deaths can be prevented. Infant mortality and child mortality can also be reduced there by reaching goals of RCH and NRHM programme. This motivated me to take up the study.

Objectives

1. To determine prevalence of anaemia among adolescent girls in the study areas.

To study the various factors associated with anaemia in the study area.

METHODS

Study design

Community based cross sectional study.

Study setting

OMC field area harazpenta (urban) and patencheru (rural).

Study population

Adolescents girls (11-19 yrs) of age who attained menarche is taken as inclusion criteria, and those girls who did not give consent for drawing blood to estimate haemoglobin.

Sample size: 360 (urban) 360 (rural)

Study period: One year (January- December 2012).

Food frequency questionnaire is used.

BMI was calculated with anthropometric calculator available in WHO anthroplus. 10 WHO anthroplus is software for the global application of the WHO Reference 2007 for 5-19 years to monitor the growth of school-age children and adolescents.

Method of haemoglobin estimation is by cyneametheheamoglobin. Anaemia is classified based on WHO classification.

Table 1: WHO classification of anaemia.

Stag	ge	Heamoglobin level (g/dl)
1.	Mild	10-11.9
2.	Moderate	7-10
3.	Severe	<7

Instruments used

Stethoscope, sphygmomanometer, prestige weighing scale. ERBA chem. 5 plus V2 to estimate haemoglobin

Data analysis: By using Epinfo 3.5.1, Ms excel.

Statistical test: Chi-square, percent.

RESULTS

Majority of adolescent girls from rural area were in 14-16 yrs age group where as in urban area they were in 12-14 yrs age group and most of them were students. The prevalence of anaemia was 74.5% and 82.6% in rural and urban area respectively. Severe anaemia was more in urban area when compared to rural area i.e. 8.4% and 3.4% respectively. Majority of girls in age group 18-19 yrs were anaemic in both rural 10(83.3%) and urban16 (100%) area. It is observed that in urban area respondents

belonging to 16-19 yrs age group were more in number when compared to rural area and they were mostly college going girls whose eating habits were different from rural girls. As the age increased prevalence of anaemia increased.

Table 2: Distribution according to grades of anaemia among study population in rural and urban area.

Grades of Anaemia	Rural		Urban		Total	
Grades of Affaetilia	Number	Percentage	Number	Percentage	Number	Percentage
Mild (10-11.9 g/dl)	148	38.9	144	37.9	292	38.5
Moderate (7-10 g/dl)	122	32.2	138	36.3	260	34.2
Severe (<7 g/dl)	13	3.4	32	8.4	45	5.9
Non-anaemic (≥12 g/dl)	97	25.5	66	17.4	163	21.4
Total	380	100	380	100	760	100

Table 3: Relationship between educational status of girl with anaemia in rural and urban area.

Educational	Rural Urban					
status	Anaemic (%)	Non-anaemic (%)	Total (%)	Anaemic (%)	Non-anaemic (%)	Total (%)
Primary	19 (86.4)	3 (13.6)	22 (100)	30 (100)	0 (0)	30 (100)
	(6.7)	(3.1)	(5.8)	(9.6)	(0)	(7.9)
Secondary	261 (74.1)	91 (25.9)	352 (100)	168 (75)	56 (25)	224 (100)
	(92.2)	(93.8)	(92.6)	(53.5)	(84.8)	(58.9)
Intermediate	3 (50)	3 (50)	6 (100)	116 (92.1)	10 (7.9)	126 (100)
Intermediate	(1.1)	(3.1)	(1.6)	(36.9)	(15.2)	(33.2)
TOTAL	283 (74.5)	97 (25.5)	380 (100)	314 (82.6)	66 (17.4)	380 (100)
	(100)	(100)	(100)	(100)	(100)	(100)

Rural- Chi-square 3.5 df-2 p value=0.16; Urban- Chi-square 23.2, df-2 p value=0.000001.

Table 4: Relationship between BMI (Based on Z- value) and anaemia in rural and urban study population.

	Rural			Urban			
BMI	Anaemic (%)	Non-anaemic (%)	Total (%)	Anaemic (%)	Non-anaemic (%)	Total (%)	
Thinness	37 (97.4)	1 (2.6)	38 (100)	91 (94.8)	5 (5.2)	96 (100)	
(<-2SD)	(13.1)	(1.0)	(88.2)	(29.0)	(7.6)	(25.3)	
Normal (-2	244 (72.8)	91 (27.2)	335 (100)	218 (79.9)	55 (20.1)	273 (100)	
SD±1 SD)	(86.2)	(93.8)	(0.5)	(69.4)	(83.3)	(71.8)	
Overweight	2 (40.0)	3 (60.0)	5 (100)	4 (50.0)	4 (50.0)	8 (100)	
(>1 SD)	(0.7)	(3.1)	(1.3)	(1.3)	(6.1)	(2.1)	
Obese (>2	0 (0.0)	2 (100)	2 (100)	1 (33.3)	2 (66.7)	3 (100)	
SD)	(0.0)	(2.1)	(10.0)	(0.3)	(3.0)	(0.8)	
Total	283 (74.5)	97 (25.5)	380 (100)	314 (82.6)	66 (17.4)	380 (100)	
Total	(100)	(100)	(100)	(100)	(100)	(100)	

Rural Chi square=19.9112; df- 3; p value=0.0002; Urban Chi square=22.3747; df-3; p value=0.0001.

Prevalence of anaemia was more in lower and lower middle class. In NFHS-3 prevalence of anaemia (64.3%) was more in low socioeconomic group. ⁴¹ The present study supports this finding in urban area as 31 (88.6%) of girls belonging to lower class were anaemic, where as in rural area girls 51 (78.5%) of lower middle class were anaemic. Upper class in rural has only one respondent (100%) who was anaemic and in urban area [27/32 (84.4%)] of upper class girls were also anaemic, so this association may not hold true as the sample size is small

in that group. The difference is statistically not significant. Mother's education did not have statistical association with their haemoglobin concentration. But had significant association with father's occupation. As the educational status of the girl increases prevalence of anaemia decreases in both areas. Appetite was less in anaemic girls in both the areas. In the present study majority of thin girls were anaemic in both rural (97.4%) and urban (94.8%) area with significant statistical association.

In present study those who were taking meat more than once a week had less percentage of anaemia 38 (36.9%) than who never consumed meat 24 (82.8%) in rural area. similarly in urban area 56 out of 62 (90.3%) who never consumed meat were anaemic when compared to 108 out of 144 (75%) who consumed more than once per week. The difference is statically significant in both rural and urban areas. Those respondents who never took green leafy vegetables have more prevalence of anaemia in both rural (90%) and in urban (96.6%) areas. In this present study in both rural (92.1%) and urban (86%) area girls who had never or occasionally consumed citrus fruits were more anaemic than who consumed thrice or more per week. All were statistically associated.

DISCUSSION

In studies done by Saibaba et al, stated that Iron deficiency anaemia was found to be the most common nutritional problem encountered by respondents. 11 About 88% of subjects were anaemic using WHO classification. Survey on prevention and control of anaemia in rural adolescent girls through school system, Medak, and Andhra Pradesh by Indian institute of health and family welfare stated that Iron deficiency anaemia was found in 81 per cent of respondents. 12 Verma et al also stated that Majority (81.8%) of girls were anaemic. 13 Survey by Indian institute of health and family welfare stated that Iron deficiency anaemia was found in 81 per cent of respondents. 12 Mild, moderate and severe grades of anaemia were observed in 63.2 per cent, 12.5 per cent and 5.3 percent of respondents, respectively. Verma et al in their study found that majority (81.8%) of girls were anaemic, out of which 55.2 per cent were mildly anaemic, 0.6 per cent severely anaemic and the rest were moderately anaemic. 13 Kaur et al stated that strongest predictor of anaemia was vegetarian diet followed by history of excessive menstrual bleeding. 14 Bentley et al in their study showed that more than 40% of women in the highest socio economic group are anaemic as are 62% of urban poor and 54% of rural poor women. 15 Study of Asokan reported that mothers education are significantly (>0.001) positively correlated with their haemoglobin concentration.¹⁶ Sanjeev et al found that out of 296 subjects, 104 (35.1%) subjects were found to be anaemic. ¹⁷ A statistically highly significant association of anaemia was found with the mother's and father's educational status. In NHFS-3 anaemia is more i.e. 60.1% in illiterate group. 18 Shubhada et al, in their study stated that, increase in perceived level of hunger was consistently and significantly higher in the experimental group after intervention with iron and folic acid when compared with the control group. 19 Rajarathnam et al stated that those girls whose height was more than 145 cms had less prevalence of anaemia (43.5%) and high mean Hb concentration (11.5 g/dl) and those who had less than 145 cms height had more prevalence of anaemia (52.1%) and less mean Hb (11.27 g/dl).²⁰ The difference is not statically significant. Bentley and Griffiths in their study stated that thin women (BMI<18.5 kg/m²) were

marginally significantly more likely to be anaemic.¹⁵ Verma et al revealed that those having a BMI of 18.5 or lower (82.4%) were having high percentage of anaemia, as compared to those with BMI more than 18.5 (79.7%). Nelson et al in their study stated that prevalence of low Hb was 20% in vegetarians, higher in white vegetarians compare with non-vegetarians (23 vs 4%) but, lower in the Indian vegetarians, compare with non-vegetarians (17 vs. 32%), and another study done by Verma et al stated that the prevalence of anaemia was significantly lower in girls consuming green leafy vegetables (p<0.01). 13,21 Study of Brise et al showed the effect of ascorbic acid on iron absorption.²² When enough is added (200 mg) ascorbic acid increases medical iron absorption by about 30%. Similar results found in Swarnalatha, et al stated that supplementation of iron with absorption enhancers, vitamins A (1.54±0.52 g/dl) increment and C (1.10±0.45 g/dl) in the case of adolescent girls resulted in better iron absorption, when compared to the girls who were supplemented with iron alone.²³ But the difference is found in Verma et al, that no significant relationship of anaemia was observed with daily consumption of lemon/sour fruits.¹³

CONCLUSION

A high prevalence of anaemia among the rural consequences of anaemia. It is a well-known fact in India that every alternate pregnant woman is anaemic and anaemia in pregnancy is the most common cause of post-partum haemorrhage (leading cause of Maternal Mortality in India). The association of anaemia with various other risk factors is also established, and there is a dire need to improve the nutrition of the adolescent girls who are the future mothers. So, the present study highlights the need to develop pragmatic intervention programmes incorporating various strategies to improve dietary intake and bioavailability of iron; nutritional supplementation of iron and folic acid tablets and fortification of edible dietary items with iron for the adolescent girls.

Funding: No funding sources Conflict of interest: None declared

Ethical approval: The study was approved by the

Institutional Ethics Committee

REFERENCES

- National consultation on RCH-I, ARSH strategy. A report by WHO, UNFPA, MOH FW- 2005.
- 2. National Family Health Survey 3. 2005-06;1:309.
- 3. Lawless JW, Latham MC, Stephenson LS, Kinoti SN, Pertet AM. Iron supplementation improves appetite and growth in anaemic Kenyan primary school children. J Nutr. 1994;124:645-54.
- 4. DeMaeyer E, Adiels-Tegman M. The prevalence of anaemia in the world. World Health Statistics Quarterly Report. 1985;38:302-16.

- 5. Dallman PR, Simes MA, Stekel A. Iron deficiency in infancy and childhood. Am J Clin Nutr. 1980;33:86-118.
- Scholl TO, Hediger ML. Anemia and irondeficiency anemia: compilation of data on pregnancy outcome. Am J Clin Nutr. 1994;59:492S-500S.
- 7. Macgregor MW. Maternal anaemia as a factor in prematurity and perinatal mortality. Scott Med J. 1963;8:134.
- 8. Editors. Movement against anaemia (MAA) (an Initiative of the Indian Medical Association). Indian Journal for the Practising Doctor. 2005;2(5):1. Available from: http://www.indmedica.com/journals.php?journalid=3&issueid=65&articleid=82 7&action=article. Assessed on 7 June 2017.
- 9. National Family Health Survey 3. (2005-06);1:310: table no-10.24.1.
- 10. WHO Reference 2007. Growth reference data for 5-19 years. Available at: http://www.who.int/growthref/en/. Assessed on 7 June 2017.
- 11. Saibaba AM, Mohan Ram GV, Ramana Rao, Uma Devi, SyamalaTS. Nutritional status of adolescent girls of urban slums and the impact of IEC on their Nutritional knowledge and practices. Indian J Community Med. 2002;27(4);10-2.
- 12. Indian Institute of Health and Family Welfare, Annual Report, 2001-2002.
- 13. Verma A, Rawal VS, Kedia G, Kumar D, Chauhan J. Indian J Community Med. 2004;29(1):25-6.
- Sinha N, Deshmukh PR, Garg BS. Epidemiological correlates of nutritional anemia among children (6-35 months) in rural Wardha, Central India. Indian J Med Sci. 2008;62:45-54.
- 15. Bentley ME, Griffiths PL. The burden of anaemia among women in India. European J Clin Nutr. 2003;57:52-60.

- 16. Asokan JS. Adolescents girls as risk group: Report of the International seminar on anaemia in south Asia, 1999.
- 17. Chaudhary SM, Dhage VR. A study of anemia among adolescent females in the urban area of Nagpur. Indian J Community Med. 2008;33:243-5.
- 18. Ministry of Health and Family welfare, Government of India, National Family Health Survey-3. 2005-06;1:309-11.
- 19. Kanani SJ, Poojara RH. Supplementation with iron and folic acid enhances growth in adolescent Indian girls. J Nutr. 2000;130:452-5.
- Rajarathnam J, Abel R, Asokan JS, Jonathan P. Prevalence of anaemia among adolescent girls of rural Tamilnadu, India. Indian Pediatr. 2000;37(5):532-6.
- 21. Nelson M, Bekaliou F, Trivedi A. Iron deficiency anaemia and physical performance in adolescent girls from different ethnic groups background. Br J Nutr. 1994;72(3):427-33.
- 22. Brise H, Halleberg L. Effect of ascorbic acid on iron absorption. Acta Medica Scandinavica 1962;171(376):51-8.
- 23. Swarnalatha A, Yegammai C. Impact of Iron, Vitamin A and Vitamin C supplementation on anaemic adolescent girls. Indian J Nutr Dietetics. 2006;43(6):229-37.

Cite this article as: Rani GS, Baburao B. A study on prevalence of anaemia and various factors influencing anaemia among adolescent girls in urban and rural field practice areas of Osmania Medical College. Int J Community Med Public Health 2017;4:3319-23.