Original Research Article

DOI: http://dx.doi.org/10.18203/2394-6040.ijcmph20173308

Hypertensive patients' adherence to pharmacological and non-pharmacological treatment methods, in Turkey

Kevser Tarı Selçuk¹*, Celalettin Çevik², Yeliz Mercan³, Haydar Koca⁴

Received: 12 June 2017 Accepted: 05 July 2017

*Correspondence: Dr. Kevser Tarı Selçuk,

E-mail: kevser_tari@hotmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: The present study was aimed at determining hypertensive patients' adherence to pharmacological and non-pharmacological treatment methods and factors affecting their adherence.

Methods: This cross-sectional study was conducted with 418 patients aged 18 and over who met the inclusion criteria. Adherence to pharmacological and some non-pharmacological treatment methods is the dependent variable of the study. Data were collected using the personal information form, Morisky medication adherence scale. In the analysis, descriptive statistics, the chi square test, and logistic regression analysis were used. The significance level was accepted as p<0.05.

Results: The rate of adherence to the pharmacological treatment was 78.2%. The rates of adherence to smoking cessation, diet and physical activity were 49.0%, 55.7% and 20.6% respectively. Age, employment status and perceived health status were associated with the adherence to smoking cessation; perceived income, resort to complementary alternative treatment methods and having regular controls (check-ups) were related to the adherence to the diet, and gender and perceived economic status were related to the adherence to physical activities (p<0.05).

Conclusions: While approximately four out of five patients complied with the pharmacological treatment, rates of adherence to non-pharmacological treatment methods were low. Multidisciplinary intervention programs should be planned in order to regularly monitor patients at family health centers, to assess their adherence to treatment modalities and to promote adherence.

Keywords: Hypertension, Patient, Treatment, Adherence

INTRODUCTION

Hypertension is one of the common preventable public health problems that cause deaths and serious complications. The aim in the treatment of hypertension, the most important risk factor for heart diseases and stroke, and responsible for about 50% of the deaths caused by these diseases, is to keep the patient's blood pressure within the ideal limits, to prevent complications

likely to occur and to increase the quality of life of the patient. ^{1,2} In the literature, keeping the blood pressure within the ideal limits has been indicated to reduce stroke risk approximately by 38%, congestive heart failure risk by 42%, and coronary heart disease risk by 28%. ³

Today, despite the advanced hypertension treatment modalities and awareness of appropriate lifestyle habits, studies performed both in Turkey and in other countries

¹Faculty of Health Sciences, Bandırma Onyedi Eylül University, Bandırma, Balıkesir, Turkey

²Balıkesir Health School, Balıkesir University, Balıkesir, Turkey

³School of Health, Kırklareli University, Kırklareli, Turkey

⁴Erdek State Hospital, Erdek, Balıkesir, Turkey

in the world in recent years report that blood pressure cannot be controlled in about 70% of adults who receive medication treatment for hypertension. ^{2,4,5} According to the World Health Organization (WHO), the main factor contributing to the failure of keeping blood pressure within the ideal limits is the non-adherence to pharmacological and non-pharmacological treatment methods. ^{2,6} Several studies conducted in countries such as China, Taiwan, Ethiopia and India to assess patients' adherence to medication treatment by using different methods report that adherence rates vary between 48% and 86%, and that non-adherence both to pharmacological and to non-pharmacological treatment methods is the most important obstacle to blood pressure control. ⁷⁻¹³

Health personnel play a key role in patients' adherence to pharmacological and non-pharmacological treatment methods used for blood pressure control. It is possible to ensure patients' adherence to pharmacological and non-pharmacological treatment methods by monitoring the patient meticulously, determining the factors affecting patients' adherence to the treatment and planning attempts to eliminate these factors. ¹⁴

In Turkey, a small body of research has been conducted on the adherence to pharmacological and non-pharmacological methods, and on factors affecting the adherence, which will shed light on the planning of community oriented attempts to increase adherence to the hypertension treatment. Therefore, the present study was aimed at determining adherence to pharmacological and non-pharmacological treatment methods used for hypertension control among hypertensive patients aged 18 years and over, and factors affecting their adherence.

METHODS

Type of the study

The study is cross-sectional.

The population and sample of the study

The minimum sample size required for the study was calculated as 384 using the formula " $n=(t^2.(Pq)/d^2)$ " used to calculate sample size for unknown population. Then, taking into account the fact that some respondents might be excluded due to several reasons, it was decided to include 10% more people as substitutes; thus, 422 patients were targeted to contact. For the calculations, 0.95% confidence level, 5% standard deviation and 50% unknown prevalence value (because, in Turkey, there is no study conducted at national level to determine the adherence rate of patients with hypertension) were used.

Inclusion criteria

The present study comprised 418 patients who presented to a Family Health Center in the province of Balıkesir

between September 1, 2015 and December 31, 2015, were 18 years of age or older, were diagnosed with hypertension at least six months ago, had the cognitive ability to answer research questions, and agreed to participate in the study.

Variables of the study

The dependent variables of the study are adherence to antihypertensive medication and adherence to nonpharmacological treatment methods such as controlling hypertension, smoking cessation, diet and physical activity. Of the patients, those whose Morisky medication adherence scale scores ranged between 1 and 7 were considered to comply with the treatment. Taking into account 2013. The European Society of Hypertension (ESH) and the European Society of Cardiology (ESC) Guidelines for the management of arterial hypertension, of the participants, those who smoked at least one cigarette per day but quit smoking after having been diagnosed with hypertension were considered that they complied with the treatment.6 Patients who stated that they were given dietary therapy by a health institute and that they followed the dietary treatment were also considered that they complied with the treatment. Patients with moderate physical activity (walking, jogging, cycling or swimming) for at least 30 minutes per day for 5-7 days per week were also considered that they complied with the treatment. Patients who had checkups at intervals of six months or shorter were considered to have checkups regularly. The assessment of the Body Mass Index (BMI) was based on WHO classification and individuals with BMI of 25 kg/m² or more were regarded as overweight or obese. 16

The independent variables of the study were as follows: age, gender, marital status, level of education, employment status, health insurance, perceived economic status, duration of hypertension diagnosis, duration of hypertension treatment, types of medicines used, resort to Complementary and Alternative Medicine (CAM), regular measurement of blood pressure at home, having regular checkups, presence of comorbid chronic illness, presence of complications, perceived health status, and BMI.

Data collection tools

The study data were collected with the Personal Information Form developed by the researchers based on the relevant literature which included 30 items questioning the sociodemographic and disease related characteristics of the patients and the 9-item Adherence to Morisky Medication Adherence Scale.

Morisky medication adherence scale

The Scale developed by Morisky et al. in 2003 includes 9-items. The first 8 questions of the scale are answered as "Yes" and "No", and are encoded (scored) as 1 and 0,

respectively. In the ninth question, for each item, one of the following options is marked: 1. never/ rarely, 2. occasionally, 3. sometimes, 4. usually, and 5. always. The lowest and highest possible scores to be obtained from the scale were 1 and 13 respectively. While those whose scores are between 1 and 7 are considered that they have complied with the treatment, those with a score of 8 or above are considered that they have not complied with the treatment. The scale was adapted to the Turkish population by Demirezen in 2006 and the Cronbach alpha value of the scale was calculated as 0.82. ^{17,18} In the present study, the Cronbach alpha value of the scale was calculated as 0.84.

Application

Before the data was collected, official permission was obtained from the institution and approval from Balıkesir University Clinical Research Ethics Committee. The purpose and scope of the study were explained to those who met the inclusion criteria and their verbal consent indicating that they agreed to participate in the study was obtained. The data were collected with the face-to-face interview technique by trained health personnel.

Analysis of the data

For data analysis, the SPSS 16.0 software (SPSS, Inc., Chicago, IL, USA) was used. In the analysis, descriptive statistics, the chi square test and logistic regression analysis were used. In order to establish a model on adherence to pharmacological treatment, cessation of smoking, diet and physical activity, a logistic regression model was developed by using the backward elimination method. The model included variables determined to be related to dependent variables through the univariate analysis and in studies in the literature. The p value of 0.05 was considered significant.

RESULTS

The mean age of the participants was 63.89±12.65 (Min: 24, Max: 93). Of them, 62.0% were female, 69.1% were married and 49.5% were primary school graduates. 21.5% were employed in a paid job, 93.5% had health insurance and 75.6% perceived their income level as moderate (Table 1).

Table 1: Rates of adherence to pharmacological and some non-pharmacological treatment methods in terms of sociodemographic characteristics of patients.

Adherence to A					Adherence to non-pharmacological treatment methods					
Variables	n (%)	pharmacolo		Smoking cessation		Diet		Physical activity		
(n=418)	П (%)	n (%)	Test value	n (%)	Test value	n (%)	Test value	n (%)	Test value	
Age										
18-44	22 (5.3)	17 (77.3)	$\chi^2 = 0.578$	2 (2.5)	$\chi^2 = 21.319$	3 30.0)	$\chi^2 = 2.862$	4 (18.2)	$\chi^2 = 0.148$ p=0.929	
45-64	203 (48.6)	162 (79.8)	p=0.749	28 (34.6)	p=0.001	76 (55.9)	p=0.239	41 (20.2)		
≥ 65	193 (46.2)	148 (76.7)		42 (72.4)		72 (57.6)		41 (21.2)		
Gender			.2 1 720		2 0 001		.2 0.255		.2 5 257	
Female	259 (62.0)	208 (80.3)	$\chi^2 = 1.728$ p=0.189	28 (49.1)	$\chi^2 = 0.001$ - p=0.978	86 (54.4)	$\chi^2 = 0.255$ p=0.613	44 (17,0)	$\chi^2 = 5.357$ p=0.021	
Male	159 (38.0)	119 (74.8)	p=0.169	44 (48.9)	p=0.978	65 (57.5)	p=0.013	42 (26.4)	p=0.021	
Marital										
status										
Single	23 (5.5)	19 (82.6)	$\chi^2 = 0.411$	4 (36.4)	$\chi^2 = 3.023$	8 (57.1)	$\chi^2 = 0.069$	5 (21.7)	$\chi^2=1.122$	
Married	289 (69.1)	224 (77.5)	p=0.411	58 (53.2)	$\chi = 3.023$ p=0.221	106 (56.1)	y =0.009 p=0.966	63 (21.8)	p=0.571	
Others*	106 (25.4)	84 (79.2)	p=0.014	10 (37.0)	p=0.221	37 (54.4)	p=0.700	18 (17.0)	p=0.571	
Level of educ	ation									
Lower than primary school	100 (23.9)	75 (75.0)		14 (50.0)		37 (48.7)	$\chi^2 = 2.260$ p=0.520	23 (23.0)	$\chi^2 = 7.458$ p=0.059	
Primary school	207 (49.5)	158 (76.3)	$\chi^2 = 3.794$	38 (59.4)	$\chi^2 = 6.285$	71 (57.7)		32 (15.5)		
Junior high school	37 (8.9)	31(83.8)	p=0.285	9 (36.0)	p=0.099	15 (57.7)		11 (29.7)		
Senior high school or higher	74 (17.7)	63 (85.1)		11 (36.7)		28 (60.9)		20 (27.0)		
Employment	status									
Employed	90 (21.5)	68 (75.6)	$\chi^2 = 0.482$	6 (15.0)	$\chi^2 = 25.390$	39 (59.1)	$\chi^2 = 0.402$	25 (27.8)	$\chi^2 = 3.642$	
Unemployed	328 (78.5)	259 (79.0)	p=0.488	66 (61.7)	p=0.000	112 (54.6)	p=0.526	61 (18.6)	p=0.056	
Health insura	ince									
Yes	31 (93.5)	303 (77.5)	$\chi^2 = 1.926$	69 (50.4)	$\chi^2 = 1.547$	143 (56.1)	$\chi^2 = 0.225$	81(20.7)	$\chi^2 = 0.075$	
No	27 (6.5)	24 (88.9)	p=0.165	3 (30.0)	p=0.328**	8 (50.0)	p=0.635	5 (18.5)	p=0.785	

Perceived economic condition									
Good	65 (15.6)	54 (83.1)		8 (36.4)		30 (71.4)		21 (32.3)	$\chi^2 = 6.607$
Moderate	316 (75.6)	246 (77.8)	$\chi^2 = 1.524$	58 (53.7)	$\chi^2 = 3.640$	111 (54.4)	$\chi^2 = 6.846$	59 (18.7)	p=0.037
Bad	37 (8.9)	27 (73.0)	p=0.467	6 (35.3)	p=0.162	10 (40.0)	p=0.033	6 (16.2)	

^{*} Divorced/widowed/separated ** Fisher's exact test.

Table 2: Rates of adherence to pharmacological and some non-pharmacological treatment methods in terms of clinical characteristics of patients.

	n (%)	Adherence	to	Adherence to Non-Pharmacological Treatment Methods						
Variables		Pharmacol	ogical	Smoking cessation		Diet		Physical activity		
(n=418)		n (%)	Test value	n (%)	Test value	n (%)	Test value	n (%)	Test value	
Duration of dia	gnosis									
<1 year	31 (7.9)	26 (83.9)		4 (33.3)		14 (82.4)		5 (16.1)		
1-5 years	135 (34.5)	109 (80.7)		24 (49.0)		46 (54.8)		29 (21.5)		
6-10 years	122 (31.2)	88 (72.1)	$\chi^2 = 5.419$	16 (38.1)	$\chi^2 = 6.684$	38 (48.7)	$\chi^2 = 6.613$	24 (19.7)	$\chi^2 = 0.921$	
≥11 years	103 (26.3)	86 (83.5)	p=0.144	21(65.6)	p=0.083	44 (57.9)	p=0.085	24 (23.3)	p=0.820	
Duration of the	treatment									
<1 year	34 (8.8)	29 (85.3)		4 (30.8)		13 (81.3)		6 (17.6)		
1-5 years	137(35.3)	109 (79.6)		24 (49.0)		46 (54.1)		29 (21.2)		
6-10 years	118 (30.4)	86 (72.9)	$\chi^2 = 5.583$	16 (39.0)	$\chi^2 = 7.978$	38 (48.7)	$\chi^2 = 6.334$	23 (19.5)	$\chi^2 = 1.013$	
≥11 years	99 (25.5)	84 (84.8)	p=0.134	20 (69.0)	p=0.046	43 (59.7)	p=0.096	24 (24.2)	p=0.798	
Types of drugs										
1	269 (64.4)	214 (79.6)		39 (43.3)		99 (58.6)		58 (21.6)		
2	110 (26.3)	89 (80.9)	$\chi^2 = 7.120$	21 (58.3)	$\chi^2 = 2.969$	34 (45.3)	$\chi^2 = 5.151$	19 (17.3)	$\chi^2 = 1.044$	
≥3	39 (9.3)	24 (61.5)	p=0.028	12 (57.1)	p=0.227	18 (66.7)	p=0.076	9 (23.1)	p=0.593	
CAM use		97 (79.5)	χ2=0.165	23 (52.3)	χ2=0.273	29 (33.7)	χ2=24.71 0		χ2=1.077	
Yes	122 (29.2)	230 (77.7)	p=0.684	49 (47.6)	p=0.602	122 (65.9)	p=0.000	29 (23.8)	p=0.299	
No	296 (70.8)							57 (19.3)		
Measuring bloo	d pressure a	t home								
Yes	330 (78.9)	262 (79.4)	$\chi^2 = 1.248$	57 (51.8)	$\chi^2 = 1.409$	125 (55.6)	$\chi^2 = 0.014$	74 (22.4)	$\chi^2 = 3.283$	
No	88 (21.1)	65 (73.9)	p=0.264	15 (40.5)	p=0.235	26 (56.5)	p=0.904	12 (13.6)	p=0.070	
Having regular	checkups									
Yes	90 (21.5)	69 (76.7)	$\chi^2 = 0.165$	12 (40.0)	$\chi^2 = 1.216$	46 (71.9)	$\chi^2 = 8.863$	18 (20.0)	$\chi^2 = 0.023$	
No	328 (78.5)	258 78.7)	p=0.685	60 (51.3)	p=0.270	105 (50.7)	p=0.003	68 (20.7)	p=0.879	
Comorbiditie										
S										
Yes	293 (70.1)	230 (78.5)	$\chi^2 = 0.042$	56 (50.5)	$\chi^2 = 0.392$	105 (51.2)	$\chi^2 = 6.909$	61(20.8)	$\chi^2 = 0.036$	
No	125 (29.9)	97 (77.6)	p=0.839	16 (44.4)	p=0.531	46 (69.7)	p=0.009	25 (20.0)	p=0.850	
Perceived healt										
Good	94 (22.5)	77 (81.9)	$\chi^2 = 2.399$	10 (45.5)	$\chi^2 = 8.084$	36 (59.0)	$\chi^2 = 0.636$	25 (26.6)	$\chi^2 = 2.910$	
Moderate	200 (47.8)	150 (75.0)	p=0.301	30 (39.5)	p=0.018	66 (53.2)	p=0.727	36 (18.0)	p=0.233	
Bad	124 (29.7)	100 (80.6)		32 (65.3)		49 (57.0)		25 (20.2)		
BMI										
Underweight / normal	139 (33.3)	109 (78.4)	$\chi^2 = 0.004$	35 (61.4)	$\chi^2 = 5.751$	45 (58.4)	$\chi^2 = 0.323$	29(20.9)	$\chi^2 = 0.011$	
Overweight / obese	279 (66.7)	218 (78.1)	p=0.948	37 (41.1)	p=0.016	106 (54.6)	p=0.570	57 (20.4)	p=0.918	

Of the participants, 26.3% were diagnosed with hypertension 11 or more years ago, 25.5% took medication for hypertension for 11 years or longer, 64.4% stated that they used only one type of medication, 29.2% resorted to CAM besides pharmacological treatment, 78.9% stated that they measured blood pressure at home, 21.5% stated that they had regular checkups, 70.1% had a chronic disease such as heart disease, diabetes and stroke co-morbid with hypertension,

22.5% perceived their health as good and 66.7% were overweight or obese (Table 2).

The mean score the participants obtained from the Morisky medication adherence scale was 5.26 ± 2.38 (Min: 2.00, Max: 12.00). The proportion of the patients who complied with the pharmacological treatment according to the cut point was 78.2%. The rates of the participants' adherence to non-pharmacological treatment

methods such as smoking cessation, diet and physical activity were 49.0%, 55.7% and 20.6% respectively.

Of the socio-demographic characteristics, age, gender, marital status, level of education, employment status, health insurance and perceived economic status did not lead to any statistically significant differences between the participants in terms of their adherence to the pharmacological treatment (p>0.05). Compared to the

other categories of the socio-demographic characteristics, adherence to smoking cessation was significantly higher among the participants in the age group of 65 and over, adherence to diet was significantly higher among the participants who perceived their economic condition as good, and adherence to physical activity was significantly higher among the male participants and the participants who perceived their economic condition as good (Table 1, p<0.05).

Table 3: Factors affecting adherence to pharmacological therapy in logistic regression analysis.

Variables (n=418)		β	SE	P	OR (%95.00 CI)
Age (years)	-	0.023	0.011	0.136	1.12 (0.74-1.45)
Gender	Male				1.00
Gender	Female	-0.125	0.279	0.655	0.88 (0.51-1.52)
	Lower than primary school				1.00
Level of education	Primary school	-0.091	0.312	0.771	0.91 (0.49-1.68)
Level of education	Junior high school	-0.627	0.578	0.278	0.53 (0.17-1.66)
	Senior high school or higher	-0.786	0.470	0.094	0.46 (0.18-1.14)
Employment status	Employed				1.00
Employment status	Unemployed	0.824	0.317	0.514	1.27 (0.88-3.21)
Health insurance	No				1.00
Health insurance	Yes	0.850	0.629	0.177	2.34 (0.68-8.02)
	Good				1.00
Perceived economic condition	Moderate	0.441	0.387	0.798	1.83 (0.92-1.81)
	Bad	-0.054	0.324	0.841	1.11 (0.79-2.41)
Duration of the treatment	-	0.051	0.032	0.216	1.42 (0.91-1.53)
	≥3				1.00
Types of drugs	1	0.054	0.304	0.860	1.06 (0.58-1.92)
	2	0.738	0.473	0.119	2.09 (0.83-5.28)
Having regular checkups	Yes				1.00
Having regular checkups	No	0.835	0.211	0.178	1.12 (0.88-1.46)
Comorbidities	No				1.00
Comorbidities	Yes	-0.042	0.299	0.889	0.96 (0.53-1.73)
	Good				1.00
Perceived health status	Moderate	0.378	0.346	0.276	1.46 (0.74-2.87)
H 11 1 4 4 0 211 N	Bad	-0.020	0.395	0.960	0.98 (0.45-2.13)

Hosmer and Lemeshow test: 0.211, Nagelkerke R square: 0.215, Omnibust test p:0.000.

The rate of adherence to pharmacological treatment was significantly lower in the participants who took three types of drugs for hypertension (p<0.05) than that in the participants who took one and two types of drugs. Compared to the other categories of the sociodemographic characteristics, adherence to smoking cessation was significantly higher among the participants who took medication for hypertension for 11 years or more, who perceived their economic condition as bad and who were underweight or healthy weight according to BMI,, and adherence to diet was significantly higher among the participants who did not resort to CAM, who had regular checkups, who did not have a chronic illness co-morbid with hypertension (p<0.05). There were no statistically significant differences between the categories of the clinical characteristics in terms of the participants' adherence to physical activity (Table 2, p>0.05).

According to the logistic regression model, one-unit increase in the patient's age led to a 1.89 fold (95.00% CI: 1.18-2.54) increase in adherence to smoking cessation. Adherence to smoking cessation was 2.58 (95% CI: 1.56-3.91) times higher in the participants who were unemployed and 1.41 (95% CI: 1.18-3.87) times higher in the participants who perceived their health as poor (Table 4). Adherence to diet was 1.96 (95% CI: 1.07-3.41) times higher in the participants who perceived their health as good, 4.65% (95.00% CI: 2.49-8.67) times higher in the participants who did not resort to CAM, and 2.44 (95.00% CI: 1.33- 4.47) times higher in the participants who had regular checkups (Table 5). Adherence to physical activity was 2.14 (95% CI: 1.29-3.54) times higher in the male participants and 3.27 (95.00% CI: 1.09-4.78) times higher in those who perceived their economic condition as good (Table 6).

Table 4: Factors affecting adherence to smoking cessation in the logistic regression model.

Variables (n=418)		β	SE	P	OR (%95.00 CI)
Age (Years)	-	0.107	0.072	0.037	1.89 (1.18-2.54)
Gender	Female				1
Gender	Male	-0.006	0.594	0.992	0.99 (0.31-3.19)
	Lower than primary school				1
Level of education	Primary school	-0.898	0.721	0.213	0.41 (0.11-1.67)
Level of education	Junior high school	-0.526	0.954	0.581	0.59 (0.09-3.83)
	Senior high school or higher	-0.506	0.908	0.577	0.60 (0.10-3.57)
Employment status	Employed				1
Employment status	Unemployed	2.026	0.553	0.003	2.58 (1.56-3.91)
Health insurance	No				1
Health insurance	Yes	-0.441	0.838	0.462	0.64(0.43-1.88)
Perceived economic	Good				1
condition	Moderate	1.161	0.895	0.195	3.19 (0.56-6.45)
Condition	Bad	-0.205	0.628	0.744	0.82 (0.24-2.79)
Duration of the treatment	-	0.121	0.091	0.147	1.19 (1.07-2.63)
Having regular checkups	Yes				1
Having regular checkups	No	0.411	0.141	0.121	1.04 (0.77-2.83)
Comorbidities	No				1
Comoi bidities	Yes	-0.21	0.58	0.717	0.81 (0.26-2.53)
	Good				1
Perceived health status	Moderate	0.395	0.718	0.582	1.48 (0.36-4.36)
	Bad	0.019	0.017	0.032	1.41 (1.18-3.87)
BMI	Underweight / normal				1
DIVII	Overweight / obese	0.181	0.0114	0.157	1.14 (1.03-1.98)

Hosmer and Lemeshow test: 0.196, Nagelkerke R square: 0.223, Omnibust test p=0.000.

Table 5: Factors affecting adherence to recommended diet in logistic regression model.

Variables (n=418)		β	SE	P	OR (%95.00 CI)
Age (Years)	-	-0.002	0.015	0.918	0.99 (0.97-1.03)
Gender	Female Male	-0.341	0.293	0.244	1 0.24 (0.40-1.26)
	Lower than primary school				1
Level of education	Primary school	-0.185	0.337	0.582	0.83 (0.43-1.61)
Level of education	Junior high school	-0.655	0.577	0.256	0.52 (0.17-1.61)
	Senior high school or higher	-0.509	0.453	0.261	0.60 (0.25-1.46)
Employment status	Employed				1
Employment status	Unemployed	0.097	0.368	0.793	1.10 (0.54-2.26)
	Bad				1
Perceived economic condition	Moderate	0.384	0.024	0.011	1.96 (1.07-3.41)
	Good	0.661	0.124	0.147	1.43 (0.94-1.97)
Duration of the treatment (years)	-	-0.028	0.018	0.11	0.97 (0.94-1.01)
CAM use	Yes	1 527	0.317	0	1
CAIVI use	No	1.537			4.65 (2.49-8.67)
Haring manulan ahashung	No	0.893	0.200	0.004	1
Having regular checkups	Yes	0.093	0.309		2.44 (1.33-4.47)
Comorbidities	No	1.024	0.34	0.113	1
Comorbidities	Yes	1.024	0.34		1.78 (0.83-3.42)
	Good	0.285	0.38	0.454	1
Perceived health status	Moderate	-0.027	0.42	0.948	1.33 (0.63-2.80)
	Bad				0.97 (0.43-2.22)
n) er	Underweight / normal	0.204	0.141	0.257	1
BMI	Overweight / obese	0.384	0.141	0.357	1.19(0.92-2.94)

Hosmer and Lemeshow test: 0.188, Nagelkerke R square: 0.229, Omnibust test p:0,000.

Table 6: Factors affecting adherence to physical activity in logistic regression model.

Variables (n=418)		β	SE	P	OR (% 95.00 CI)
Age (Years)	-	-0.008	0.013	0.551	0.99 (0.96-1.02)
Gender	Female				1
Gender	Male	0.758	0.258	0.003	2.14 (1.29-3.54)
	Lower than primary school				1
Level of education	Primary school	0.557	0.336	0.098	1.75 (0.90-3.71)
Level of education	Junior high school	0.146	0.497	0.769	1.16 (0.44-3.06)
	Senior high school or higher	0.123	0.408	0.763	1.13 (0.51-2.52)
Employment status	Employed				1
Employment status	Unemployed	0.164	0.33	0.619	1.18 (0.62-2.25)
Perceived economic	Bad				1
condition	Moderate	1.185	0.559	0.034	3.27 (1.09-4.78)
Condition	Good	0.806	0.315	0.071	2.24 (0.96-3.16)
Duration of the Treatment	-	0.128	0.551	0.844	1.27(0.79-2.86)
Having regular checkups	No				1
maving regular checkups	Yes	0.195	0.294	0.507	1.22 (0.68-2.16)
Comorbidities	No				1
Comorbiantes	Yes	0.876	0.323	0.117	2.40 (0.97-4.52)
	Good				1
Perceived health status	Moderate	0.393	0.318	0.217	1.48 (0.79-2.76)
	Bad	0.41	0.362	0.257	1.51 (0.74-3.06)
BMI	Underweight / normal				1
DIVII	Overweight / obese	0.381	0.249	0.157	1.88(0.91-3.44)

Hosmer and Lemeshow test: 0.192, Nagelkerke R square: 0.232, Omnibust test p=0.000.

DISCUSSION

In this present study, in which adherence to pharmacological and non-pharmacological treatment were studied, approximately 80% of the participants complied with the pharmacological treatment. Rates of adherence to pharmacological treatment range between 52% and 87% in studies conducted in Turkey and between 48% and 84% in studies conducted abroad. The WHO has reported that rates of adherence to pharmacological treatment by hypertension patients vary between 20% and 80%. Thus, it can be concluded that the rate of adherence to pharmacological treatment in this present study conducted in a semi-urban region in Turkey overlaps with the rates reported in the literature.

In this present study, there was no association between adherence to pharmacological treatment and socio-demographic characteristics. Similarly, in some studies in the literature, adherence to pharmacological treatment is not associated with socio-demographic characteristics. ^{7,21,22,26}

On the other hand, some studies have indicated that sociodemographic characteristics such as age, gender, level of education, perceived income status are related to adherence to the pharmacological treatment.^{3,21,26} For example, while adherence to treatment increases in some studies as the age increases it decreases in other studies.^{8,23,27} In these studies, an increase or decrease in

the rate of adherence to the treatment with age may be due to the presence of comorbid chronic diseases, perceived health status, or differences in giving or receiving health care. 7,24 While gender is not a determinant for the rate of adherence to the pharmacological treatment in some studies the adherence rate is high in women in other studies.^{8,19} In the present study, although not significant, the rate of adherence was high in women as in the literature. 10,21 This can be explained by the fact that men are busy with the outdoor activities which causes them to forget to take their medications. While in some of the studies in the literature, income and education levels are not related to adherence to treatment, in some other studies, rates of adherence to pharmacological treatment are reported to increase as income and education levels increase. 12,21,22 In this present study, although not statistically significant, the rate of adherence to pharmacological treatment was higher in the participants with good economic status and higher education level. Given that the majority of the participants who had regular checkups and perceived their income status as good had a high school or higher education level, this finding can be interpreted as a sign of inequality in access to health services. As geographical and economic access to health services increases, so does the utilization of health services.²¹ Another finding that can be interpreted in a similar way in this present study is that the rate of adherence to pharmacological treatment was high in those who did not have the social insurance, which may have been because of the fact that they meticulously complied with the pharmacological

treatment due to economic concerns. Although not statistically significant, in the present study, in line with findings in the literature, the rate of adherence to pharmacological treatment decreased as the types of drugs taken by the participants increased; on the other hand, the rate of adherence increased in those who measured blood pressure at home. 8

The fact that there was not a significant association between socio-demographic and clinical characteristics and adherence to the pharmacological treatment in this study could be explained with the multifactorial nature of adherence to hypertension treatment. In addition, although the size of the research group was large enough to determine the 50.0% prevalence, no significant relationship was detected between socio-demographic and clinical characteristics and adherence to the pharmacological treatment could be explained by the limited strength of the study to detect relatively small differences between groups in terms of adherence to pharmacological treatment.

Another issue that is as important as adherence to pharmacological treatment in the treatment of hypertension is adherence to non-pharmacological treatment. In studies conducted on the issue, rates of adherence to non-pharmacological treatment methods were well below the desired level the rate of adherence to smoking cessation was between 18% and 83% to diet was between 36% and 69% and to physical activity was between 23% and 36%. ^{12,15,19,20,27} In the present study, parallel to the literature, approximately 56% of the participants complied with diet, half of the participants quit smoking, and only 21% of the participants complied with physical activity.

In the present study, the rate of adherence to smoking cessation in the advanced age and unemployed participants was high. In the literature, smoking cessation rates are reported to be high in advanced age groups. ²⁸ A high adherence rate in unemployed patients might be due to the fact that the vast majority of them were in the advanced age group. In addition, the rate of adherence to smoking cessation was high in the participants who perceived their health as bad. This can be explained by the fact that the participants who perceived their health as bad suffered from death anxiety more.

In the present study, the rate of adherence to diet was high in patients who had a good economic status, did not resort to CAM and had checkups regularly. Similarly, in the literature, it is stated that the income status, level of education, health professionals' failure to inform patients about diet sufficiently and CAM use were determinants of adherence to diet. ^{12,29,30} In addition, the high level of adherence to diet in patients who had regular checkups once again demonstrates the importance of qualified patient monitoring.

Adherence to physical activity in hypertensive patients is affected by gender and income status in some studies, and by lack of facilities related to physical activity in some other studies. 12,31,32 In the literature, people employed in regular jobs are involved in physical activity more than those who are unemployed.³³ In the present study, similar to the literature, the rate of adherence to physical activity was high in the male participants and in those who perceived their income level as good. This may be due to the fact that the vast majority of those who perceived their income level as well were those who had regular paid jobs. In addition, the high rate of adherence to physical activity in male patients may be due to the fact that men spend more time outside the home than do women in Turkish society. In many studies conducted in Turkey, men's physical activity levels are reported to be higher than those of women. 34,35

Study limitations

That the study was carried out with hypertensive patients presenting to a single health institution and that its results are applicable only to the study population is the most important limitation of the study. Another limitation of the study was that variables such as body weight and height used to calculate BMI were based on verbal reporting of the participants.

CONCLUSION

In hypertensive and non-hypertensive individuals' lifestyle, modifications, previously termed as nonpharmacologic therapy, play a major role. In the present study, approximately four-thirds of the participants complied with pharmacological treatment. In the present study, the rates of adherence to non-pharmacological treatment were not at a desired level, about half of the participants guit smoking and complied with their diet and only one-fifth of them complied with the physical activity. Given the importance of controlling blood pressure in patients with hypertension and the role of adherence to treatment modalities in the prevention of complications, these results suggest that these patients are at risk for complication development. In addition, in the present study, both the rates of adherence to treatment modalities and only about one of the patients stated that they had checkups regularly suggest that patient followup at Family Health Centers is not satisfactory. Therefore, regular monitoring of patients in Family Health Centers, evaluation of patients' adherence to treatment methods and planning multidisciplinary intervention programs to promote adherence should be ensured. Additional studies as well are needed to test the practicability and effectiveness of interventions suggested to enhance adherence.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

REFERENCES

- 1. World Health Organization. A Global Brief of Hypertension. Switzerland: WHO Books; 2013: 39.
- 2. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. Evidence-Based Guideline for the Management of High Blood Pressure in Adults: Report From the Panel Members Appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507-20.
- 3. Roberie DR, Elliott WJ. What is the prevalence of resistant hypertension in the United States? Curr. Opin Cardiol. 2012;27(4):386–91.
- 4. Unal B, Ergor G, Horasan GD. Kalaca S, Sozmen K. Chronic Diseases and Risk Factors Survey In Turkey. Ankara: Anil Press; 2013: 322.
- 5. Sozmen K, Ergor G, Unal B. Determinants of prevalence, awareness, treatment and control of high blood pressure. Dicle Med J. 2015;42(2):199-207.
- 6. European Society of Cardiology. 2013 AEH/ESC Arterial Hypertension Guidelines. Turk Soc. Cardiol Res. 2014;Suppl.4:S1-72.
- Solomon A, Schoenthaler A, Seixas A, Ogedegbe G, Jean-Louis G, Lai D. Medication Routines and Adherence Among Hypertensive African Americans. J Clin Hypertens. 2015;17(9):668-72.
- 8. Lee GKY, Wang HHX, Liu KQL, Cheung Y, Morisky DE, Wong MCS. Determinants of medication adherence to antihypertensive medications among a Chinese population using Morisky medication adherence scale. PLoS One. 2013;8(4):e62775.
- 9. Li WW, Kuo CT, Hwang SL, Hsu HT. Factors related to medication non-adherence for patients with hypertension in Taiwan. J Clin Nurs. 2012;21(13-14):1816–24.
- Hareri HA, Abebe M. Assessments of Adherence to Hypertension Medications and Associated Factors among Patients Attending Tikur Anbessa Specialized Hospital Renal Unit, Addis Ababa, Ethiopia 2012. IJNSS. 2013;3(1):1-6.
- 11. Bhandari S, Sarma PS, Thankappan KR. Adherence to Antihypertensive Treatment and Its Determinants among Urban Slum Dwellers in Kolkata, India. Asia Pac J Public Health. 2015;27(2):74-84.
- Uzun S, Kara B, Yokusoğlu M, Arslan F, Yilmaz MB, Karaeren H. The assessment of adherence of hypertensive individuals to treatment and lifestyle change recommendations. Anatol J Cardiol. 2009;9:102-9.
- Grezzana GB, Stein AT, Pellenda LC. Blood Pressure and Control Through 24 Hour Ambulatory Monitoring. Arq Bras Cardiol. 2013;100(4):347-53.
- 14. Hacıhasanoglu R, Gozum S. The effect of patient education and home monitoring on medication adherence, hypertension management, healthy lifestyle behaviours and BMI in a primary health care setting. JCN. 2011;20:692–705.
- Aypak C, Onder O, Dicle M, Yikilkan H, Tekin H, Gorpelioglu S. Evaluation of Blood Pressure

- Control Levels and Treatment Compliances of Hypertensive Patients. Cukurova Med J. 2013;38(2):224-32.
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic, Report of a WHO Consultation on Obesity. Geneva: WHO Books; 1997: 158.
- 17. Morisky DE, Green LW, Levine DM. Concurrent and predictive validty of a self-reported measure of meditation adherence. Med Care, 1986;24(1):67-74.
- 18. Demirezen E. Adherence to drug treatment in Turkish using antihypertensive drugs living in Turkey and Germany. Istanbul University Healt Science Institute Nursing Programme, doctorate thesis, Istanbul, 2006.
- 19. Mert H, Ozcakar N, Kuruoglu E. A Multidisciplinary special study module research: treatment compliance of patients with hypertension. Turkish J Fam Pract. 2011;15(1):7-12.
- Sahin ZA, Bicer N. Healthy Lifestyle Behaviors of Hypertension Patients. MN Cardiol. 2015;22(4):180-5.
- Ambaw AD, Alemie GA, W/Yohannes, SM, Mengesha ZB. Adherence to antihypertensive treatment and associated factors among patients on follow up at University of Gondar Hospital, Northwest Ethiopia. BMC Public Health. 2012;12:282.
- 22. Busari OA, Olanrewaju TO, Desalu OO, Opadijo OG, Jimoh AK, Agboola SM, et al. Impact of patients' knowledge, attitude and practices on hypertension on adherence to antihypertensive drugs in a resource-poor setting. TAF Prev Med Bull. 2010;9(2):87-92.
- 23. Park YH, Kim H, Jang SN, Koh CK. Predictors of adherence to medication in older Korean patients with hypertension. Eur J Cardiovasc Nurs. 2013;12(1):17-24.
- 24. Schmieder RE, Ott C, Schmid A, Friedrich S, Kistner I, Ditting T, et al. Adherence to Antihypertensive Medication in Treatment-Resistant Hypertension Undergoing Renal Denervation. J Am Heart Assoc. 2016;5(2):e002343.
- World Health Organization. Adherence to Long-Term Therapies: Evidence for Action. Switzerland: WHO Books; 2003: 194.
- 26. Wong MC, Jiang JY, Griffiths SM. Antihypertensive drug adherence among 6408 Chinese patients on angiotensin-converting enzyme inhibitors in Hong Kong: a cohort study. J Clin Pharmacol. 2010;50(5), 598-605.
- 27. Jankowska-Polańska B, Blicharska K, Uchmanowicz I, Morisky DE. The influence of illness acceptance on the adherence to pharmacological and non-pharmacological therapy in patients with hypertension. Eur J Cardiovasc Nurs. 2016;15(7):559-68.
- 28. Myung SK, Seo HG, Park S, Kim Y, Kim DJ, Lee DH, et al. Sociodemographic and Smoking Behavioral Predictors Associated with Smoking

- Cessation According to Follow-up Periods: A Randomized, Double-blind, Placebo-controlled Trial of Transdermal Nicotine Patches. J Korean Med Sci. 2007;22(6):1065-70.
- 29. Khatib R, Schwalm JD, Yusuf S, Haynes RB, McKee M, Khan M, et al. Patient and healthcare provider barriers to hypertension awareness, treatment and follow up: a systematic review and meta-analysis of qualitative and quantitative studies. PLoS One. 2014;9(1):e84238.
- 30. Barnes DM, Lu JH. Mexican immigrants' and Mexican Americans' perceptions of hypertension. Qual. Health Res. 2012;22(12):1685-93.
- 31. Ohta Y, Tsuchihashi T, Onaka U, Eto K, Tominaga M, Ueno M. Long-Term Compliance with Salt Restriction in Japanese Hypertensive Patients. Hypertens Res. 2005;28(12):953-7.
- 32. Peters DH1, Garg A, Bloom G, Walker DG, Brieger WR, Rahman MH. Poverty and access to health care in developing countries. Ann N Y Acad Sci. 2008;1136:161-71.

- 33. Van Domelen DR, Koster A, Caserotti P, Brychta RJ, Chen KY, McClain JJ, et al. Employment and physical activity in the U.S. Am J Prev Med. 2011;41(2):136-45.
- 34. Genc A, Sener U, Karabacak H, Ucok K. Investigation of Physical Activity and Quality of Life Differences between Male and Female Young Adults. Med. J Kocatepe. 2011;12:145-50.
- 35. Aktas H, Sasmaz CT, Kilincer A, Mert E, Gulbol S, Kulekcioglu D, Kilar S, Yuce RY, Ibik Y, Uguz E, Demirtas A. Study on the factors related to physical activity levels and sleep quality in adults. Mersin Univ Med J Health Sci. 2015;8(2):60-70.

Cite this article as: Selçuk KT, Çevik C, Mercan Y, Koca H. Hypertensive patients' adherence to pharmacological and non-pharmacological treatment methods, in Turkey. Int J Community Med Public Health 2017;4:2648-57.