

## Original Research Article

DOI: <https://dx.doi.org/10.18203/2394-6040.ijcmph20260315>

# A study on knowledge, attitude, and practices related to brucellosis among small-scale dairy farmers in a rural area of Belagavi, Karnataka

Darshan Patil<sup>1</sup>, Chelikam Veeraraghavendra Reddy<sup>2\*</sup>,  
Kalmeshwar Revagoud<sup>1</sup>, Ravindra Sarawade<sup>1</sup>

<sup>1</sup>Jawaharlal Nehru Medical college, Belagavi, Karnataka, India

<sup>2</sup>Indian Institute of Public Health, Bhubaneswar, Odisha, India

**Received:** 08 December 2025

**Accepted:** 19 January 2026

**\*Correspondence:**

Dr. Chelikam Veeraraghavendra Reddy,  
E-mail: [raghuchelikum@gmail.com](mailto:raghuchelikum@gmail.com)

**Copyright:** © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

## ABSTRACT

**Background:** Brucellosis remains a significant zoonotic disease affecting livestock productivity and human health in India. Despite the high burden in Karnataka, little is known about farmers' knowledge, attitudes, and practices (KAP) in rural Belagavi. This study aimed to assess KAP related to brucellosis among small-scale dairy farmers to identify behavioural gaps influencing disease transmission.

**Methods:** A community-based cross-sectional study was conducted among 188 small-scale dairy farmers in rural Belagavi. Data were collected using a pre-tested structured questionnaire covering socio-demographic characteristics and KAP components. Descriptive statistics were used to summarise responses, and associations were assessed using Chi-square or Fisher's exact tests.

**Results:** Awareness of brucellosis was limited, with 53.2% having never heard of the disease and 52.4% demonstrating poor knowledge scores. Most participants were unaware of zoonotic transmission (84.6%) or human symptoms (76.1%). Despite these gaps, attitudes were predominantly positive, with all participants scoring within the favourable range. Several risky practices were identified: 93.6% sold unpasteurized milk, protective measures during handling of aborted materials were minimal, and only 6.9% reported adopting any preventive or vaccination-related precautions. Although 96.8% sought veterinary care for sick animals, most relied on family advice for general animal health decisions.

**Conclusions:** Farmers exhibited substantial knowledge gaps and unsafe practices despite positive attitudes toward disease prevention. Strengthening community-based education, improving awareness of zoonotic risks, and promoting safe livestock-handling behaviours are essential for effective brucellosis control in this high-risk population.

**Keywords:** Attitude, Brucellosis, Dairy farmers, Knowledge, Practices, Zoonosis

## INTRODUCTION

Brucellosis is a major bacterial zoonotic disease that continues to threaten both livestock productivity and human health worldwide. In cattle, it causes abortions, prolonged calving intervals, and reduced milk production, leading to considerable economic losses for farmers and the dairy sector. Humans may acquire the infection through consumption of unpasteurised dairy products or through direct contact with infected animals and

contaminated materials such as placenta, urine, dung, or carcasses.<sup>1-4</sup> In many low- and middle-income countries, including those in South and Central Asia, brucellosis remains endemic and contributes significantly to the burden of disease among rural communities.<sup>2-4</sup>

Human brucellosis presents with non-specific symptoms such as fever, sweating, weakness, joint pain, lymphadenopathy, and weight loss, which often leads to delayed recognition and underdiagnosis.<sup>3</sup> In India, the

disease affects multiple livestock species including cattle, buffalo, goats, sheep, and pigs, and those working closely with animals—such as farmers, veterinarians, animal handlers, and abattoir workers—are at particularly high risk of exposure<sup>4</sup>. Risky farming behaviours linked to poor knowledge, attitudes, and practices (KAP) further contribute to the disease's persistence and spread at the community level.<sup>4</sup>

India carries one of the highest burdens of brucellosis globally. Karnataka is among the most affected states, and recent investigations reported prevalence ranging from 4% to 18% across districts, with Belagavi district recording the highest prevalence at 18%.<sup>5</sup> Given Belagavi's prominence as a major milk-producing region, this high disease burden is especially concerning. Yet, despite the public health and economic implications, there is limited community-level evidence on farmers' understanding of brucellosis and their preventive behaviours. This lack of locally relevant data represents a significant barrier to designing effective interventions.

Although the Government of India launched the Brucellosis Control Programme in 2010 to reduce transmission and economic losses, the success of such efforts depends heavily on farmers' awareness, perceptions, and adoption of safe practices.<sup>5</sup> Studies from different settings—including Palestine, Ethiopia, Iran, South Africa, Sri Lanka, Bangladesh, Uganda, and others—consistently show that farmers often have low awareness of zoonotic transmission, inadequate attitudes toward prevention, and engage in high-risk behaviours such as consuming raw milk, handling aborted materials without protection, and improper disposal of foetuses.<sup>1-15</sup> Similar patterns have been reported in Indian studies as well, where poor knowledge, lack of protective measures, and high-risk practices remain common among dairy farmers.<sup>16-18</sup> These findings highlight the importance of understanding the local behavioural and knowledge context in high-burden areas.

Belagavi, with its high prevalence of bovine brucellosis and large population of small-scale dairy farmers, represents a critical setting where targeted KAP assessments are essential. However, little is known about how farmers in this region perceive the disease, manage sick animals, or implement preventive measures such as vaccination and hygienic practices during milking or while handling aborted materials. Addressing these knowledge gaps is crucial for improving disease control and reducing transmission risks at the human-animal interface.

In this context, the present study was conducted to assess the knowledge, attitudes, and practices related to brucellosis among small-scale dairy farmers in a rural area of Belagavi, Karnataka. The findings from this study aim to generate evidence needed to inform locally appropriate health education strategies and strengthen

brucellosis prevention and control efforts in this high-risk population.

## METHODS

### **Study design**

A community-based cross-sectional study was conducted to assess the knowledge, attitude, and practices (KAP) related to brucellosis among small-scale dairy farmers residing in a rural area of Belagavi, Karnataka.

### **Study setting**

The study was conducted in selected rural villages of Belagavi district, Karnataka, India. Data collection was conducted from July 2023 to February 2024, and the overall study period spanned March 2023 to March 2024. The setting primarily consisted of smallholder dairy households engaged in cattle rearing. Recruitment, interviews, and data collection took place at the farmers' residences or cattle-rearing sites.

### **Inclusion criteria**

Small-scale dairy farmers involved in cattle rearing. Family members aged  $\geq 18$  years involved in cattle-related activities.

### **Exclusion criteria**

Individuals unwilling to provide informed consent.

### **Sampling strategy**

Participants were selected using a convenience sampling technique from eligible households in the study area. A total of 188 participants were included.

### **Variables**

The primary outcome variables included knowledge, attitude, and practice scores related to brucellosis. Knowledge was assessed through questions on transmission, causative organism, symptoms, vaccination, and treatment. Attitude was measured using statements answered on a three-point Likert scale (agree, neutral, disagree), and practice was assessed based on daily cattle-handling and biosecurity-related behaviours. Socio-demographic variables such as age, gender, religion, education, marital status, family income and family size served as predictor variables, while factors such as education level, age, and income were considered potential confounders.

### **Data sources and measurement**

Data were collected using a pre-designed and pre-tested structured questionnaire administered through face-to-face interviews. The tool comprised four sections: socio-

demographic characteristics, knowledge regarding brucellosis, attitude towards brucellosis, and practices related to cattle handling and milk consumption. The questionnaire was validated through a pilot study involving 10% of the sample, and appropriate revisions were made before final use. All participants received the same questionnaire, ensuring uniformity of measurement across the study.

### Bias control

Multiple steps were taken to minimize bias. The use of a validated questionnaire reduced measurement bias, while face-to-face interviews ensured clarity of questions and prevented incomplete responses. Confidentiality was maintained to minimize socially desirable answers, particularly for practice-related questions. No incentives were offered to avoid coercion or participation bias.

### Study size

The required sample size was estimated using a 95% confidence interval and an allowable error of 15%. The formula applied was:

$$N = \frac{Z_{1-\alpha/2}^2 \times SD^2}{(0.15 \times SD)^2} \times 1.1$$

Where  $Z_{1-\alpha/2} = 1.96$  for a 95% confidence level, and the multiplication factor 1.1 accounts for an anticipated 10% attrition rate. Based on these parameters, the initial calculated sample size was 170. After adjusting for attrition, the final sample size required for the study was 188 participants.

### Quantitative variables

Knowledge scores were categorized as poor (0-2), average (3-6), and good (7-10). Attitude scores were classified as positive (22-45) or negative (0-22). Practice scores were categorized as good (5-8) or poor (1-4). Socio-demographic variables such as age, income, and education were grouped into meaningful categories to facilitate analysis and interpretation.

### Statistical methods

All responses were coded and entered into Microsoft Excel and subsequently analyzed using SPSS version 20. Descriptive statistics in the form of frequencies and percentages were used to summarize all categorical variables. Associations between socio-demographic characteristics and knowledge, attitude, and practice scores were explored using the Chi-square test, and Fisher's exact test was applied where cell counts were small. There were no missing data because all questionnaires were interviewer-administered and checked for completeness at the time of data collection. Sensitivity analyses were performed by re-running

statistical tests using Fisher's exact test for validation in cases of small expected frequencies.

## RESULTS

A total of 188 participants were included in the study. The socio-demographic characteristics of the participants are presented in Table 1.

The study included a total of 188 participants. The age distribution showed that 16.9% were between 18-25 years, 31.7% were 26-35 years, 15.4% were 36-45 years, 12.7% were 46-55 years, 16.8% were 56-65 years, and 6.5% fell within the 66-80 years age group. Regarding gender, 51.9% of participants were male and 48.1% were female. In terms of religion, 96.8% of the participants belonged to the Hindu community, whereas 3.2% were Muslims. With respect to education, 33.7% had completed primary schooling, 34.0% had completed secondary schooling, 14.8% were graduates, and 17.5% were illiterate. A majority of participants (82.6%) were married, 14.9% were unmarried, and 2.5% were widowed. Monthly household income distribution revealed that 73% earned below ₹25,000; 19.2% earned between ₹25,000-50,000; 3.4% earned between ₹50,000-1,00,000; and 4.4% earned above ₹1,00,000. Family size showed that 54% resided in households consisting of 1-5 family members, while 46% lived in households with 6-9 members.

**Table 1: Socio-demographic profile of participants (n=188).**

| Variable                       | Category         | Frequency | Percentage |
|--------------------------------|------------------|-----------|------------|
| Age group (years)              | 18-25            | 32        | 16.9       |
|                                | 26-35            | 60        | 31.7       |
|                                | 36-45            | 29        | 15.4       |
|                                | 46-55            | 24        | 12.7       |
|                                | 56-65            | 31        | 16.8       |
|                                | 66-80            | 12        | 6.5        |
| Gender                         | Male             | 98        | 51.9       |
|                                | Female           | 90        | 48.1       |
| Religion                       | Hindu            | 182       | 96.8       |
|                                | Muslim           | 6         | 3.2        |
| Education                      | Primary school   | 63        | 33.7       |
|                                | Secondary school | 64        | 34.0       |
|                                | Graduate         | 28        | 14.8       |
|                                | Illiterate       | 33        | 17.5       |
| Marital status                 | Married          | 156       | 82.6       |
|                                | Unmarried        | 28        | 14.9       |
|                                | Widow            | 4         | 2.5        |
| Monthly household income (INR) | Below 25,000     | 138       | 73.0       |
|                                | 25,000-50,000    | 36        | 19.2       |
|                                | 50,000-1 lakh    | 6         | 3.4        |
|                                | Above 1 lakh     | 8         | 4.4        |
| Family size                    | 1-5 members      | 102       | 54.0       |
|                                | 6-9 members      | 86        | 46.0       |

**Table 2: Knowledge-related responses of participants (n=188).**

| Knowledge Item                      | Category/response            | Frequency | Percentage |
|-------------------------------------|------------------------------|-----------|------------|
| Heard about brucellosis             | Yes                          | 88        | 46.8       |
|                                     | No                           | 100       | 53.2       |
| Source of information               | Book                         | 26        | 13.8       |
|                                     | Relatives/Friends            | 37        | 19.7       |
|                                     | Television                   | 4         | 2.1        |
|                                     | Veterinarian                 | 19        | 10.1       |
|                                     | Do not know                  | 102       | 54.3       |
| Animals that can be infected        | Cattle/Sheep/Goat            | 50        | 26.6       |
|                                     | All mammals                  | 35        | 18.6       |
|                                     | Do not know                  | 103       | 54.8       |
| Brucellosis infects humans          | Yes                          | 49        | 26.1       |
|                                     | No                           | 9         | 4.8        |
|                                     | Do not know                  | 130       | 69.1       |
| Transmission: Animal to animal      | Yes                          | 83        | 44.1       |
|                                     | No                           | 105       | 55.9       |
| Transmission: Animal to human       | Yes                          | 29        | 15.4       |
|                                     | No                           | 159       | 84.6       |
| Causative organism                  | Virus                        | 1         | 0.5        |
|                                     | Bacteria                     | 29        | 15.4       |
|                                     | Do not know                  | 158       | 84.0       |
| Symptoms in humans                  | Fever                        | 22        | 11.7       |
|                                     | Skin lesions                 | 20        | 10.6       |
|                                     | Headache                     | 3         | 1.6        |
|                                     | Do not know                  | 143       | 76.1       |
| Awareness about animal vaccination  | Yes                          | 167       | 88.8       |
|                                     | No                           | 20        | 10.6       |
|                                     | Do not know                  | 1         | 0.5        |
| Cattle infected previously          | Yes                          | 49        | 26.1       |
|                                     | No                           | 139       | 73.9       |
| Treatment given for infected cattle | Antibiotic/operation/vaccine | 49        | 26.1       |
|                                     | Not applicable               | 139       | 73.9       |
| Overall knowledge score             | Poor (0-2)                   | 99        | 52.4       |
|                                     | Average (3-6)                | 42        | 22.2       |
|                                     | Good (7-10)                  | 47        | 24.9       |

In Table 2, awareness of brucellosis showed that 46.8% had heard of the disease, whereas 53.2% had never heard of it. Among those who were aware, sources of information varied: 13.8% reported books, 19.7% cited relatives or friends, 2.1% television, 10.1% veterinarians, and 54.3% stated they did not know any source of information. When asked which animals could be infected, 26.6% mentioned cattle, sheep, or goats, 18.6% believed all mammals could be infected, and 54.8% reported not knowing. Regarding infection in humans, 26.1% stated it could infect humans, 4.8% believed it could not, and 69.1% did not know. Knowledge of routes of transmission showed that 44.1% believed animal-to-animal transmission occurs, while 55.9% did not. For animal-to-human transmission, 15.4% responded yes, whereas 84.6% responded no. Knowledge of the causative organism indicated that 0.5% thought a virus was responsible, 15.4% correctly identified bacteria, and

84% did not know. Regarding symptoms in humans, 11.7% identified fever, 10.6% identified skin lesions, 1.6% identified headaches, and 76.1% could not identify any symptom. Awareness of animal vaccination was high, with 88.8% reporting that they were aware, 10.6% unaware, and 0.5% uncertain. About 26.1% reported that their cattle had previously been infected, while 73.9% reported no prior infection. Treatment methods reported by those with infected cattle showed 26.1% used antibiotics, operations, or vaccines, while 73.9% marked this category as not applicable. Based on knowledge scoring, 52.4% demonstrated poor knowledge (0-2 score), 22.2% had average knowledge (3-6 score), and 24.9% had good knowledge (7-10 score).

In Table 3, regarding attitudes toward the economic impact of brucellosis, 4.3% strongly agreed, 30.3% agreed, and 65.4% remained neutral, with no participants disagreeing.

**Table 3: Attitude-related responses of participants (n=188).**

| Attitude statement                               | Response category | Frequency | Percentage |
|--------------------------------------------------|-------------------|-----------|------------|
| <b>Brucellosis causes economic loss</b>          | Strongly agree    | 8         | 4.3        |
|                                                  | Agree             | 57        | 30.3       |
|                                                  | Neutral           | 123       | 65.4       |
|                                                  | Disagree          | 0         | 0          |
|                                                  | Strongly disagree | 0         | 0          |
| <b>Brucellosis is common in India</b>            | Strongly agree    | 7         | 3.7        |
|                                                  | Agree             | 44        | 23.4       |
|                                                  | Neutral           | 137       | 72.9       |
|                                                  | Disagree          | 0         | 0          |
|                                                  | Strongly disagree | 0         | 0          |
| <b>Spread from bovine to sheep/goat</b>          | Strongly agree    | 14        | 7.4        |
|                                                  | Agree             | 37        | 19.7       |
|                                                  | Neutral           | 133       | 70.7       |
|                                                  | Disagree          | 4         | 2.1        |
|                                                  | Strongly disagree | 0         | 0          |
| <b>Spread from sheep/goat to bovine</b>          | Strongly agree    | 12        | 6.4        |
|                                                  | Agree             | 22        | 11.7       |
|                                                  | Neutral           | 149       | 79.3       |
|                                                  | Disagree          | 4         | 2.1        |
|                                                  | Strongly disagree | 1         | 0.5        |
| <b>Control programme will be successful</b>      | Strongly agree    | 7         | 3.7        |
|                                                  | Agree             | 76        | 40.4       |
|                                                  | Neutral           | 104       | 55.3       |
|                                                  | Disagree          | 1         | 0.5        |
|                                                  | Strongly disagree | 0         | 0          |
| <b>Submit infected cattle to slaughterhouse</b>  | Strongly agree    | 1         | 0.5        |
|                                                  | Agree             | 20        | 10.6       |
|                                                  | Neutral           | 76        | 40.4       |
|                                                  | Disagree          | 78        | 41.5       |
|                                                  | Strongly disagree | 13        | 6.9        |
| <b>Tagging helps track disease</b>               | Strongly agree    | 10        | 5.3        |
|                                                  | Agree             | 61        | 32.4       |
|                                                  | Neutral           | 117       | 62.2       |
|                                                  | Strongly disagree | 0         | 0          |
|                                                  | Strongly disagree | 0         | 0          |
| <b>Willing to pay for vaccination if cheaper</b> | Strongly agree    | 72        | 38.3       |
|                                                  | Agree             | 101       | 53.7       |
|                                                  | Neutral           | 15        | 8.0        |
|                                                  | Disagree          | 0         | 0          |
|                                                  | Strongly disagree | 0         | 0          |
| <b>Insured farmers more likely to vaccinate</b>  | Strongly agree    | 10        | 5.3        |
|                                                  | Agree             | 71        | 37.8       |
|                                                  | Neutral           | 106       | 56.4       |
|                                                  | Disagree          | 1         | 0.5        |
|                                                  | Strongly disagree | 0         | 0          |
| <b>Overall attitude score</b>                    | Negative (0-22)   | 0         | 0          |
|                                                  | Positive (22-45)  | 188       | 100        |

Responses regarding brucellosis being common in India showed that 3.7% strongly agreed, 23.4% agreed, and 72.9% were neutral. For disease spread from bovine to sheep/goat, 7.4% strongly agreed, 19.7% agreed, 70.7% were neutral, and 2.1% disagreed. Similarly, for spread from sheep/goat to bovine, 6.4% strongly agreed, 11.7%

agreed, 79.3% remained neutral, 2.1% disagreed, and 0.5% strongly disagreed. Regarding control programmes, 3.7% strongly agreed, 40.4% agreed, 55.3% were neutral, and 0.5% disagreed. When asked about submitting infected cattle to slaughterhouses, 0.5% strongly agreed, 10.6% agreed, 40.4% were neutral, 41.5% disagreed, and

6.9% strongly disagreed. For tagging infected cattle, 5.3% strongly agreed, 32.4% agreed, and 62.2% were neutral.

Regarding willingness to pay for a cheaper vaccination, 38.3% strongly agreed, 53.7% agreed, and 8% were neutral. For the item about livestock insurance influencing vaccination decisions, 5.3% strongly agreed, 37.8% agreed, 56.4% were neutral, and 0.5% disagreed. Overall attitude scoring showed that 100% of the participants fell within the positive attitude range (22-45 score), and none fell into the negative range (0-22 score).

In Table 4, regarding milk-related practices, 93.6% reported selling unpasteurized milk, while 6.4% did not. For personal consumption, 6.4% consumed unpasteurized milk, whereas 93.6% did not. During calving, 28.2% reported that males assisted, 62.8% that females assisted, and 9% reported assistance from both. When facing animal health issues, 48.9% discussed them with family

members, 3.7% with neighbours, and 47.3% with veterinarians. The handling of aborted fetuses showed that 91.5% buried them, 7.4% threw them away, and 1.1% called a veterinarian. During animal abortion, 88.8% reported calling a veterinarian as the protective measure, 2.7% washed hands, and 8.5% used gloves. Regarding measures taken when purchasing new livestock, 47.9% relied on the advice of other farmers, 3.7% consulted experts, 29.8% consulted veterinarians, and 18.6% relied on their own knowledge. When cattle became sick, 96.8% sought veterinary care, while 3.2% did not know what to do. Only 6.9% reported taking vaccination or personal precautionary measures, while 93.1% reported no such measures. Among those taking precautions, 2.1% used injections and 4.8% used tablets, while 93.1% reported this as not applicable. Based on practice scoring, 46% demonstrated poor practices (1-4 score), and 53.4% demonstrated good practices (5-8 score).

**Table 4: Practice-related responses of participants (n=188).**

| Practice Item                               | Response            | Frequency | Percentage |
|---------------------------------------------|---------------------|-----------|------------|
| <b>Sell unpasteurised milk</b>              | Yes                 | 176       | 93.6       |
|                                             | No                  | 12        | 6.4        |
| <b>Consume unpasteurised milk</b>           | Yes                 | 12        | 6.4        |
|                                             | No                  | 176       | 93.6       |
| <b>Person assisting during calving</b>      | Male                | 53        | 28.2       |
|                                             | Female              | 118       | 62.8       |
|                                             | Both                | 17        | 9.0        |
| <b>Discussion of animal health problems</b> | Family              | 92        | 48.9       |
|                                             | Neighbours          | 7         | 3.7        |
|                                             | Veterinarian        | 89        | 47.3       |
| <b>Handling of aborted foetus</b>           | Bury                | 172       | 91.5       |
|                                             | Throw away          | 14        | 7.4        |
|                                             | Call veterinarian   | 2         | 1.1        |
| <b>Protection during abortion</b>           | Call veterinarian   | 167       | 88.8       |
|                                             | Wash hands          | 5         | 2.7        |
|                                             | Use gloves          | 16        | 8.5        |
| <b>Measures for new livestock</b>           | Advice from farmers | 90        | 47.9       |
|                                             | Expert opinion      | 7         | 3.7        |
|                                             | Veterinarian advice | 56        | 29.8       |
|                                             | Own knowledge       | 35        | 18.6       |
| <b>Action when cattle are sick</b>          | Seek veterinarian   | 182       | 96.8       |
|                                             | Do not know         | 6         | 3.2        |
| <b>Vaccination or precautions taken</b>     | Yes                 | 13        | 6.9        |
|                                             | No                  | 175       | 93.1       |
| <b>Type of precaution taken</b>             | Injection           | 4         | 2.1        |
|                                             | Tablet              | 9         | 4.8        |
|                                             | Not applicable      | 175       | 93.1       |
| <b>Overall practice score</b>               | Poor (1-4)          | 87        | 46.0       |
|                                             | Good (5-8)          | 101       | 53.4       |

## DISCUSSION

The present study assessed the knowledge, attitudes, and practices related to brucellosis among 188 small-scale dairy farmers in rural Belagavi. The socio-demographic

structure showed that most participants were within the younger and middle-aged categories, with nearly equal gender distribution and mixed educational backgrounds. Similar demographic profiles have been reported in farmer-based KAP studies in India and other low- and

middle-income countries, where cattle ownership is typically shared among male and female household members and education levels vary widely.<sup>1,2</sup>

### **Knowledge**

The results showed that less than half of the participants (46.8%) had heard of brucellosis, and a substantial proportion lacked awareness regarding transmission routes, zoonotic risk, clinical symptoms, and causative organism. More than half (52.4%) demonstrated poor knowledge scores. These findings are consistent with several studies across South Asia, Africa, the Middle East and India that reported similarly low levels of awareness among livestock farmers.<sup>3,4,6,10,18</sup> For example, Deka et al found that only a small proportion of dairy farmers in Assam and Bihar had knowledge of brucellosis and very few recognised its zoonotic potential.<sup>18</sup> Likewise, Kothalawala et al in Sri Lanka reported that farmers rarely understood species susceptibility or the abortion-related symptoms associated with the disease.<sup>11</sup> Studies from Pakistan, Ethiopia and Thailand also reported limited farmer knowledge of brucellosis despite long-standing endemicity.<sup>6,7,19</sup> Study's finding that 84% did not know the causative organism further mirrors reports from Uganda and Tanzania where farmers similarly lacked basic etiological understanding.<sup>15,20</sup> The limited ability to identify human symptoms (76% reporting "don't know") is consistent with prior evidence showing that brucellosis is often misdiagnosed or misunderstood by both farmers and frontline workers.<sup>11</sup>

### **Attitude**

Despite low knowledge, this study found a universally positive attitude score among all participants. Many expressed agreement that brucellosis causes economic loss, that control programmes could be effective, and that they were willing to pay for vaccination if affordable. This pattern-poor knowledge but positive attitudes-has been documented previously.<sup>15,21</sup> For instance, Hiremath et al. found that although farmers in Karnataka had minimal knowledge, many still demonstrated positive attitudes toward preventive measures.<sup>17</sup> Similarly, studies from Jordan and Uganda reported positive perceptions toward disease control despite low awareness, suggesting farmers may be receptive to interventions when adequately informed.<sup>15,22</sup> This study results also showed a large proportion selecting "neutral" for many attitude items, particularly regarding interspecies transmission and culling infected animals.

### **Practices**

The study revealed several risky practices: 93.6% sold unpasteurised milk, use of protective equipment during handling of aborted materials was minimal, most farmers relied on family or peers rather than veterinarians for advice, and only 6.9% adopted preventive measures such as vaccination or personal protection.

These unsafe practices have been widely reported in literature.<sup>5,7,20</sup> Chowdhury et al found that Bangladeshi dairy farmers commonly sold and consumed raw milk despite risks.<sup>5</sup> Pakistan-based studies reported frequent handling of aborted material without gloves and inconsistent sanitation practices similar to those observed in this sample.<sup>7</sup> Studies in Africa (Tanzania, Kenya, Ethiopia) also found farmers relying on informal community advice rather than professional veterinary guidance.<sup>19,20</sup>

However, one encouraging finding in this study was that 96.8% consulted veterinarians when cattle were sick. This aligns with evidence from Myanmar and Uganda showing that when accessible, farmers do tend to rely on veterinary services for treatment, even if they lack preventive practices.<sup>15,16</sup>

Interpretation of these results assumes that self-reported data accurately reflect actual farmer behaviour; however, social desirability bias may underestimate risky practices such as poor hygiene or unsafe disposal of aborted foetuses. Similar limitations have been reported in other KAP studies.<sup>14,18</sup> The cross-sectional nature of the study limits causal inference, and variations in local veterinary outreach, education levels, or cultural practices may influence KAP outcomes.

### **Contribution to knowledge**

This study adds valuable evidence to the limited literature on brucellosis KAP among rural dairy farmers in Karnataka. By combining socio-demographic characteristics with detailed KAP findings, the study highlights specific deficiencies-particularly low knowledge levels and risky practices despite favourable attitudes. These results align with global trends but offer region-specific insight that can guide targeted intervention strategies for improving farmer awareness, biosecurity practices, and zoonotic disease prevention.

The findings reinforce the need for structured farmer education programmes, community-based awareness campaigns, and strengthened veterinary extension services. By clearly identifying gaps between knowledge, attitudes and practices, this study contributes to shaping future brucellosis control strategies in India and similar low-resource settings.

### **CONCLUSION**

This study highlighted substantial gaps in knowledge and several high-risk practices related to brucellosis among small-scale dairy farmers in rural Belagavi, despite generally positive attitudes toward disease prevention. Most farmers were unaware of zoonotic transmission, human symptoms, and safe livestock-handling procedures, which contributes to ongoing risk of infection for both animals and humans. The widespread sale of unpasteurised milk, limited use of protective measures

during handling of aborted materials, and low uptake of preventive actions further underscore the vulnerability of this community. Strengthening targeted farmer education, improving veterinary extension services, and promoting accessible, community-based awareness programmes are essential to bridge the gap between attitudes and actual practices. Addressing these behavioural and informational gaps is critical for reducing brucellosis transmission, protecting farmer health, and supporting sustainable livestock productivity in high-burden regions such as Belagavi.

## ACKNOWLEDGEMENTS

Authors would like to sincerely acknowledge the support and guidance of Dr. Soumya S., Dr. Ashwini, for valuable insights, encouragement, and contributions have been instrumental in shaping this work.

*Funding: No funding sources*

*Conflict of interest: None declared*

*Ethical approval: The study was approved by the Institutional Ethics Committee Ref No. MDC/JNMCIEC/331*

## REFERENCES

1. Awwad E, Awwad O, Farraj M, Essawi T, Adwan K, Manasra A, et al. An investigation of brucellosis knowledge, attitude and practice among livestock owners in the west bank. *CBUP.* 2017;5:1042-7.
2. Shurbe M, Wondimu A, Eshetu N, Seyoum W, Tora E, Simeon B, et al. Detection of antibodies against brucellosis and associated risk factors in cross breed dairy cattle in smallholder farmers, southern Ethiopia. *Veter Med Res Rep.* 2023;23:33.
3. Bahadori F, Ghofranipour F, Zarei F, Saeideh G. Iranian livestock breeders' knowledge, attitude, practice and behavioral determinants related to Brucellosis prevention. Research Square. 2023 Available from: <https://www.researchsquare.com/article/rs-2991619/v1>. Accessed on 8 December 2025.
4. Olaogun SC, Fosgate GT, Byaruhangwa C, Marufu MC. The knowledge, attitudes, and practices of smallholder cattle farmers concerning the epidemiology of bovine fasciolosis in the North West Province, South Africa. *Trop Anim Health Prod.* 2023;55(2):97.
5. Chowdhury T, Ahmed J, Hossain MT, Roy MC, Ashik-Uz-Zaman M, Uddin MN, et al. Knowledge, attitudes and biosecurity practices among the small-scale dairy farmers in Sylhet district, Bangladesh. *Veter Med Sci.* 2023;9(5):2221-9.
6. Peck ME, Jenpanich C, Amonsin A, Bunpapong N, Chanachai K, Somrongthong R, et al. Knowledge, attitudes and practices associated with brucellosis among small-scale goat farmers in Thailand. *J Agromed.* 2019;24(1):56-63.
7. Tahir A, Naz S, Afzal MS, Shabbir RMK, Ali S, Shah N, et al. Community based assessment on knowledge, attitude and practices (KAP), risk factors and one health perspective of brucellosis in rural and urban settings of Pakistan: a cross-sectional study. *J Hellenic Vet Med Soc.* 2022;73(3):4339-56.
8. Govindaraj G, Nagalingam M, Nethrayini KR, Shalini R, Rajeswari Shome RS, Bambal RG, Lipi Sairiwal LS, Rahman H. Assessment of brucellosis knowledge, attitude and practice among veterinarians in India. *J Exp BiolAgricult Sci.* 2016;4(Spl-3-ADPCIAD):S83-94.
9. Ghugey S, Setia MS, Deshmukh JS. Knowledge, attitude and practice for brucellosis amongst migratory animal handlers: a cross-sectional study in Maharashtra, India. *J Clin Diagn Res.* 2021;15.
10. Singh BB, Kaur R, Gill GS, Gill JPS, Soni RK, Aulakh RS. Knowledge, attitude and practices relating to zoonotic diseases among livestock farmers in Punjab, India. *Acta Trop.* 2019;189:15-21.
11. Kothalawala KACH, Makita K, Kothalawala H, Jiffry AM, Kubota S, Kono H. Knowledge, attitudes, and practices (KAP) related to brucellosis and factors affecting knowledge sharing on animal diseases: a cross-sectional survey in the dry zone of Sri Lanka. *Trop Anim Health Prod.* 2018;50(5):983-9.
12. Jaismon PA, Sushmitha AP, Verma MR, Singh YP, Borthakur U, Kumar S, et al. Prevalence of bovine brucellosis in India: a meta-analysis. *Veter Quart.* 2023;43(1):1-9.
13. Ngoshe YB, Etter E, Gomez-Vazquez JP, Thompson PN. Knowledge, attitudes, and practices of communal livestock farmers regarding animal health and zoonoses in far northern KwaZulu-Natal, South Africa. *Int J Environ Res Public Health.* 2022;20(1):511.
14. Hussain S, Hussain A, Zia UR, Naqvi SMR, Zahoor MY, Bilal M, et al. Knowledge, attitude, and practices associated with brucellosis among livestock owners and its public health impact in Punjab, Pakistan. *Biologia.* 2021;76(10):2921-9.
15. Kansiime C, Mugisha A, Makumbi F, Mugisha S, Rweogo IB, Sempa J, et al. Knowledge and perceptions of brucellosis in the pastoral communities adjacent to Lake Mburo National Park, Uganda. *BMC Public Health.* 2014;14(1):242.
16. Win H, Kasemsuwan S, Myint HT, Monaya E, Phimpraphai W. Prevalence and risk factors of brucellosis and dairy farmers' KAP in 2 townships, Myanmar. *Veter Integr Sci.* 2023;21(2):439-56.
17. Hiremath NI, Kangle R, Narasannavar A. Knowledge, attitude and practice of brucellosis among farmers rearing cattle in Belagavi Taluka- a one year cross-sectional study. *J Pharm Pract Community Med.* 2023;9(2):11-4.
18. Deka RP, Magnusson U, Grace D, Shome R, Lindahl JF. Knowledge and practices of dairy

farmers relating to brucellosis in urban, peri-urban and rural areas of Assam and Bihar, India. *Infect Ecol Epidemiol.* 2020;10(1):1769531.

19. Abunna F, Gebresenbet G, Megersa B. Assessment of knowledge, attitude and practices (KAP) of farmers about transmission of zoonotic diseases in Ada'a district, Oromia, Ethiopia. *Helion.* 2024;10(4):e25713.

20. Kiffner C, Latzer M, Vise R, Benson H, Hammon E, Kioko J. Comparative knowledge, attitudes, and practices regarding anthrax, brucellosis, and rabies in three districts of northern Tanzania. *BMC Public Health.* 2019;19(1):1625.

21. Kustiningsih H, Sudarnika E, Basri C, Sudarwanto M. Dairy farmers' knowledge, attitudes, and practices regarding the brucellosis surveillance and control program in Bogor, Indonesia. *Vet World.* 2023;126-33.

22. Musallam II, Abo-Shehada MN, Guitian J. Knowledge, attitudes, and practices associated with brucellosis in livestock owners in Jordan. *Am Soc Trop Med Hyg.* 2015;93(6):1148-55.

**Cite this article as:** Patil D, Reddy CV, Revagoud K, Sarawade R. A study on knowledge, attitude, and practices related to brucellosis among small-scale dairy farmers in a rural area of Belagavi, Karnataka. *Int J Community Med Public Health* 2026;13:846-54.