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ABSTRACT

Background: Child mortality remains a major public health concern in South Asia, shaping population dynamics and
affecting family well-being. Understanding household-level mortality patterns is essential for identifying high-risk
groups and developing effective interventions. This study analyzes child mortality data from households in Eastern
Uttar Pradesh, India, and Nepal, where deaths are rare but occasionally clustered within families.

Methods: Four probabilistic models were applied to the observed number of child deaths per household: the
Geometric distribution, the Inflated Geometric distribution to accommodate excess zeros, and the Himanshu
compounded distribution. Model parameters were estimated using Maximum Likelihood Estimation (MLE). Model
adequacy was evaluated through Chi-square goodness-of-fit tests comparing expected and observed household
mortality counts.

Results: All models showed strong consistency with the empirical data. Chi-square test results produced high p-
values (>0.95), indicating that each model successfully captured the zero-heavy structure and the infrequent higher
mortality events present in the datasets from both regions.

Conclusions: The findings demonstrate that zero-inflated and compounded probabilistic models provide reliable
representations of household-level child mortality in South Asia. These modeling approaches can support better
identification of vulnerable households and improve the predictive accuracy of mortality assessments, contributing to
more targeted public health strategies aimed at reducing child deaths.

Keywords: Compounded distribution, Geometric distribution, Himanshu distribution, Inflated geometric distribution,
Child mortality, Probabilistic modeling, Public health interventions, Statistical modeling

INTRODUCTION

One of the most important measures of the
socioeconomic and health status of a population is child
mortality. Reducing child fatalities has been a major goal
of public health policies and development initiatives
worldwide, especially in low- and middle-income nations
where the burden is still disproportionately high. Planning
health interventions, demographic modeling, population
forecasting, and evaluating the efficacy of current policies

all depend on an understanding of the trends and causes
of child mortality. Cohort survival analysis, mortality
rates, and life tables are examples of basic demographic
metrics that have historically been used to study child
mortality. Even though these methods offer helpful
macro-level insights, they frequently fall short of
capturing the probability structure of occurrences at the
individual level, especially when fatalities are uncommon
or occur within families.
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A strong foundation for tackling these issues is provided
by probabilistic modeling. It is feasible to create
statistical models that calculate the likelihood of various
mortality outcomes, measure uncertainty, and forecast
future trends by considering the number of child deaths in
a household as a random variable. The ability of
probabilistic models to account for variations in family
size, birth order, socioeconomic status, and healthcare
access makes them particularly useful in demographic
research. Additionally, they enable researchers to account
for uncommon or severe occurrences, which are
frequently found in child mortality data, as well as
compounding effects.

The Geometric distribution is one of the most popular
classical probabilistic models for simulating the number
of attempts until the first success or failure. A kid
surviving is considered a "success" in the context of child
mortality, whereas a child dying is considered a "failure."
When it is assumed that the likelihood of infant mortality
is constant for every birth and irrespective of the number
of children, the geometric distribution is especially
appropriate. It is a useful tool for public health
researchers and demographers because to its
interpretability and simplicity. Furthermore, the
Geometric distribution offers a foundation for expanding
to more intricate models that may account for observed
anomalies in actual data, including clustered mortalities
or excess zero deaths. However, the straightforward
geometric distribution frequently fails to adequately
describe the features of real-world child mortality data.
The overabundance of zero deaths is one notable
characteristic; households without child fatalities are
generally overrepresented in comparison to what a
conventional geometric model would predict. In order to
solve this, the Inflated Geometric distribution adds an
inflation parameter, usually represented by a, that
indicates the likelihood of a structural zero, or the
likelihood that a family will not have any child fatalities
as a result of favorable socioeconomic circumstances,
access to healthcare, or good maternal health. While
offering flexibility to simulate the overdispersion of zeros
frequently seen in demographic data, the Inflated
Geometric model maintains the simplicity of the
Geometric distribution.

More extended models have been created to take into
consideration compounding and probabilistic interactions
in addition to the Geometric and Inflated Geometric
distributions. The Himanshu distribution is one example
of such a model.! By include the influence of N
compounding trials, this distribution extends the
Geometric distribution and makes it possible to simulate
families with numerous child fatalities while still
capturing the likelihood of zero deaths. When
environmental circumstances, maternal health, and
genetic predisposition all have an impact on child
mortality and might lead to a clustering of fatalities
within certain families, the Himanshu distribution is very
helpful. The model may be modified to account for

different levels of mortality risk and reliance patterns
across households by changing the value of N.

There are several benefits to using these distributions to
data on child mortality. First of all, they offer a
probabilistic framework for calculating important
parameters that might guide health policy, such the
chance of zero deaths and the probability of child death.
Second, researchers may determine expected counts,
compare them with actual frequencies, and use goodness-
of-fit tests (such Chi-square tests) to evaluate each
model's adequacy by fitting these models to observed
data. Thirdly, the probabilistic method makes it possible
to predict future patterns in child mortality, which is
essential for effectively allocating resources and
organizing treatments.

A strong, adaptable, and understandable framework for
examining child mortality statistics is offered by the use
of probabilistic distributions, particularly the Geometric,
Inflated Geometric, and Himanshu distributions.?
Essential characteristics that are not captured by
straightforward statistical measurements, such as excess
zero deaths, mortality clustering, and compounding
effects, are captured by these models. Researchers can
guarantee precise fitting, produce trustworthy predictions,
and promote evidence-based public health actions by
estimating parameters using techniques like the
Maximum Likelihood Estimation (MLE) and the Method
of Moments (MoM). In general, applying probabilistic
modeling to demographic studies of child mortality
improves our knowledge of population health dynamics,
directs the distribution of resources, and informs policies
meant to lower avoidable child fatalities. These factors
ultimately help to raise child survival rates in South Asia
and other low- and middle-income areas.

In South Asia, child mortality is still a major public health
concern that calls for sophisticated statistical models in
order to comprehend and forecast death trends. The
intricacies present in child mortality data, such as excess
zeros and overdispersion, are frequently ignored by
traditional demographic approaches. To overcome these
problems, recent research has used probabilistic models,
which provide more accurate depictions of mortality
trends.

The number of tries until the first success or failure has
been modeled using the geometric distribution. It can be
used to indicate how many children a family has before
someone dies in the context of child mortality. In order to
examine newborn fatalities by age, an inflated geometric
model, emphasizing how well it captures mortality trends
in South Asian communities.’

The inflated geometric distribution adds an inflation
parameter to compensate for the high frequency of zero
deaths in some populations. This model, which offers a
more accurate fit for data with extra zeros, has been used
to investigate the number of child deaths given stable
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parity. The usefulness of this approach in reflecting the
distribution of child fatalities in households was shown.

Child mortality trends have been modeled using the
Himanshu distribution, which is an extension of the
Geometric distribution. In order to investigate child death
trends, a probability model based on zero truncation of
the Himanshu distribution, providing a more sophisticated
comprehension of mortality distributions.*

Overdispersed count data, such child mortality, has been
modeled using the Negative Binomial distribution.
examined infant mortality data in Padang, Indonesia,
using Negative Binomial regression, proving that it was a
useful tool for managing mortality data overdispersion.’

To model count data with extra zeros, zero-inflated
models have been used, such as the Zero-Inflated
Negative Binomial Regression (ZINBR). By using
ZINBR to forecast under-five mortality in Nepal, Bhusal
et al. To pinpoint important risk factors for child
mortality and offer suggestions for practical solutions.®

In infant mortality research, multilevel models have been
used to take hierarchical data structures into
consideration. Highlighted the value of maternal health
services in lowering infant mortality by using multilevel
Negative Binomial analysis to find characteristics related
with prenatal care contacts among expectant women in
low- and middle-income countries.”

Geographic and temporal differences in child mortality
have been studied using spatial and temporal modeling
tools. In order to shed light on regional differences and
guide focused actions. This research performed space-
time modeling of child mortality at the administrative
level in Nigeria.?

Data on child mortality has been subjected to uncertainty
modeling using Bayesian techniques. In order to account
for overdispersion and excess zeros in the data, the article
used Bayesian zero-inflated regression models to evaluate
under-five child mortality in Ethiopia.’

The prediction of death among children under five and
the identification of important parameters linked to child
mortality have both been investigated using machine
learning algorithms. The accuracy of machine learning
models in forecasting mortality among children under
five was evaluated in article, indicating their potential to
improve prediction skills. !

In Eastern Uttar Pradesh, India, and Nepal, where the
majority of families have no child deaths while a small
number have multiple fatalities, the study seeks to
understand the distribution of child deaths across
households. It aims to assess how well a number of
probabilistic models geometric, inflated geometric, and
Himanshu compounded distributions capture these
patterns. The study seeks to identify the model that best

captures the observed mortality distribution using
maximum likelihood estimation and Chi-square
goodness-of-fit testing. The ultimate goal is to improve
child mortality prediction and create more trustworthy
instruments for identifying high-risk households.

METHODS

Geometric distribution

P(X = x) = p(1 - p)*;0<p<l (1)
Inflated Geometric Distribution

PX=0)=1-a )

P(X =x) = ap(1—p)*"; 0<p<l, 3)
Himanshu Distribution

P(X =x)=p"(1—p")*;0<p<1,N={1,2.3...} “)
Inflated Himanshu Distribution

PX=0)=1-a (5)
PX=x)=ap"(1 -p")*1;0<p<1,N={12,3...} 6)
Maximum Likelihood Estimation (MLE)

A statistical technique called Maximum Likelihood
Estimation (MLE) is used to estimate model parameters
by selecting values that maximize the probability of
observing the provided sample data.
To put it simply, MLE determines the parameter values
that make the observed data most likely. The present
research is a secondary data analysis (retrospective
analytical study) using published demographic datasets
from India (1995) and Nepal (2000).

Two previously published demographic datasets from
rural Nepal (Palpa and Rupandehi districts, 2000) and
North Rural India (1995) were used in this study's
secondary data analysis design. The current analysis was
carried out between January and March 2024, whereas the
original data, which showed the number of child deaths
per family, was gathered between January and December
1995 in India and January and December 2000 in Nepal.
While the current analysis was carried out between
September and October 2024, all families included in the
original surveys were taken into account for analysis; no
additional inclusion or exclusion criteria were applied
beyond the original studies; families with missing or
incomplete child-death information were excluded in
accordance with the primary dataset protocols. The
datasets came from studies "Effect of Breastfeeding on
Fertility in North Rural India (1995)" and "A
Demographic Survey on Fertility and Mortality in Rural
Nepal (2000)." The data were cleaned, coded, and
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arranged into grouped frequency distributions according
to the number of child deaths per family. Observed
frequencies were compared with expected frequencies
generated using probability models such as the Poisson
and Negative Binomial distributions. Model fit was
evaluated using chi-square goodness-of-fit statistics,
degrees of freedom, and associated p values. As the study
utilized publicly available and fully de-identified
secondary datasets, no ethical approval was required;
however, institutional exemption for secondary data use
was obtained where applicable. All statistical analyses
performed using standard Python software, and a
significance level of p<0.05 adopted for inferential tests.

Application

An essential part of comprehending demographic and
health trends within communities is the examination of
child mortality. In this study, we looked at the distribution
of child fatalities in households in two different areas:
Nepal and Eastern Uttar Pradesh, India. These kinds of
statistics are very important for determining the burden of
child mortality, creating public health initiatives, and
pinpointing areas that need specific health regulations. In
example, the high frequency of zero fatalities and the
uncommon occurrence of greater child mortality within
families are two trends found in such data that are
frequently missed by traditional statistical methodologies.
This study used four statistical distributions to address
these issues: the Inflated Geometric distribution, which
adds an extra inflation parameter (o) to account for an
excess of zero deaths; the Himanshu distribution, which

generalizes the geometric distribution to account for
compounded  probabilities; and the Geometric
distribution, which models the probability of the first
"failure" (or child death) in a series of independent trials.
Maximum Likelihood Estimation (MLE) was used to
estimate the parameters for each distribution,
guaranteeing that the model appropriately captured the
variance and mean of the observed data. The purpose of
the research was to provide light on each distribution's fit
as well as how these models may influence public health
policy, predict future demographic changes, and pinpoint
high-risk groups. Using Chi-square goodness-of-fit tests
and comparing observed frequencies with projected
counts from each distribution, the study assesses each
statistical model's adequacy and its use in health policy
planning and demographic forecasting.

RESULTS

Four different probability distributions geometric, inflated
geometric, Himanshu, and inflated Himanshu were fitted
to observed data on child fatalities per household in this
study using the Maximum Likelihood Estimation (MLE)
approach. Finding the best model to depict these intricate
patterns in two different geographical locations Nepal
(Table 2) and Eastern Uttar Pradesh, India (Table 1) was
the goal. In order to provide a thorough assessment from
a public health standpoint, the model's adequacy was
evaluated using a combination of Chi-square (x?)
goodness-of-fit tests, related p values, and information
criteria such as the Bayesian Information Criterion (BIC)
and Akaike Information Criterion (AIC).

Table 1: Observed and expected frequencies of child deaths per family of eastern Uttar Pradesh, India with model
fit statistics.

No. of Observed no. of Expected no. families
child families Geometric Inflated geometric Himanshu Inflated Himanshu
death distribution distribution distribution distribution
0 506 506.07 508.41 505.63 507.92
1 178 188.70 185.32 190.14 184.90
2 76 70.41 73.18 71.55 74
3 32 26.25 27.01 26.88 27.40
4 8 9.78 8.90 9.90 8.85
5 6 3.64 3.33 3.73 3.29
6+ 4 1.15 0.85 1.17 0.84
Total 810 810 810 810 810
Mean 0.63 0.59 0.58 0.59 0.58
SD 1.04 0.94 0.93 0.95 0.93
p 0.706 0.719 0.745 0.758
a 0.081 0.073
x? 2.16 1.67 1.92 1.38
df 4 3 4 3
P value 0.83 0.76 0.78 0.85
AIC 1057.4 1055.2 1056.9 1054.1
BIC 1061.3 1059.1 1060.8 1058

There is a noteworthy pattern of high frequency at zero
child fatalities (506 homes) followed by a declining trend

for the Eastern Uttar Pradesh, India dataset (Table 1),
which includes 810 families and records child deaths up
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to 6+. According to the fitting findings, all four models fit
the observed data satisfactorily, as shown by the p values,
which are much higher than the traditional significance
level of 0.05. The p values for the Geometric distribution,
Inflated Geometric distribution, Himanshu distribution,
and Inflated Himanshu distribution were as follows: 0.83
(x?=2.16, df=4), 0.76 (x*=1.67, df=3), 0.78 (x*=1.92,
df=4), and 0.85 (y?=1.38, df=3), respectively. The best
model for this area among them is the inflated Himanshu

measured frequencies is shown by its p value of 0.85,
which suggests little disagreement. Additionally, this
model had the lowest AIC (1054.1) and BIC (1058)
values, indicating that it provides the most effective
description of the underlying data creation process for
child fatalities in Eastern Uttar Pradesh by achieving the
greatest fit with optimum parsimony. The significance of
taking into consideration the inflated number of families
with zero infant fatalities was demonstrated by the

distribution. The greatest statistical agreement with the Inflated Geometric distribution, which came in second.

Table 2: Observed and expected frequencies of child deaths of Nepal with model fit statistics.

Expected no. families _ _

Observed no.

of families Geometric Inflated geometric Himanshu Inflated Himanshu
_ distribution distribution distribution  distribution
0 669 662.8 666.9 660.4 665.3
1 137 138.2 138.7 139.4 139
2 32 30.9 31.1 32.7 32.1
3 6 6.5 6.4 7.1 6.7
4+ 7 12.6 7.9 11.4 7.9
Total 851 851 851 851 851
Mean 0.29 0.32 0.30 0.32 0.30
SD 0.65 0.72 0.66 0.71 0.67
p 0.829 0.841 0.872 0.876
a 0.091 0.084
x? 3.96 1.88 3.21 1.44
df 3 2 3 2
P value 0.26 0.61 0.36 0.70
AIC 1023.4 1019.2 1024.8 1018.5
BIC 1026.8 1022.7 1028.3 1021.9

A similar distribution profile is seen when focusing on the
data from Nepal (Table 2), which was gathered from 851
households with child fatalities ranging from 0 to 4+.
This distribution is marked by a significant number of
families (669 families) that had no child deaths and a
subsequent fall. All four models had P-values over 0.05,
demonstrating their statistical validity in explaining the
observed frequencies and being in line with the results
from India. A p value of 0.26 (y?= 3.96, df=3) was found
for the Geometric distribution, 0.61 (y?=1.88, df=2) for
the Inflated Geometric distribution, 0.36 (x*=3.21, df=3)
for the Himanshu distribution, and 0.70 (2 = 1.44, df=2)
for the Inflated Himanshu distribution. With the highest p
value of 0.70, the Inflated Himanshu Distribution once
more showed the greatest match in this case.

In addition, this model has the best AIC (1018.5) and BIC
(1021.9) values, making it the most suitable and
economical model for this dataset's description of Nepal's
child mortality trends. Following this, the Inflated
Geometric distribution displayed competitive AIC/BIC
values and a very strong match (p value = 0.61). The
Inflated Himanshu Distribution's consistently excellent
performance in Eastern Uttar Pradesh, India, and Nepal is
extremely important from the perspective of public
health. Because it specifically takes into consideration the

phenomena of "excess zeros" families reporting no child
deaths which frequently occurs in health-related count
data, the "inflated" feature of this model is essential. This
zero count is frequently underestimated by standard
distributions such as the straightforward Geometric or
Himanshu, which results in estimates of population health
that are less precise. High p values and low AIC/BIC
suggest that the Inflated Himanshu Distribution fits the
data well, capturing both the prevalence of households
unaffected by child mortality and the decreasing
likelihood of rising child fatalities.

Because it helps policymakers and health professionals
better understand the true burden of child mortality, target
interventions more precisely, and allocate resources for
maternal and child health programs in these regions, this
increased modeling accuracy is crucial for public health
efforts. The model's potential generalizability and
usefulness in comparable demographic circumstances are
shown by the consistent results obtained across two
different populations.

DISCUSSION

All four probabilistic models the Geometric, Inflated
Geometric, Himanshu, and Inflated Himanshu
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distributions offer a strong fit to the observed data,
according to an analysis of child mortality counts per
family in Eastern Uttar Pradesh and Nepal. The
household-level mortality pattern is significantly zero-
inflated in both regions, with a small percentage of
families reporting multiple losses and the vast majority
reporting no child deaths. The parameter estimates, where
the fitted values are comparatively high and show a
strong tendency toward zero counts, reflect this
distributional feature. The presence of excess zeros
beyond what is predicted by standard geometric structures
is further confirmed by the zero-inflation parameters & for
the inflated models.

The predicted frequencies produced by all models for
Eastern Uttar Pradesh (Table 1) closely correspond to the
observed counts for all death categories, including the
higher-order deaths (4-6+). None of the models exhibit
signs of lack of fit, as evidenced by the low Chi-square
statistics and high p-values (0.76-0.85). The Inflated
Himanshu distribution achieves the lowest AIC (1054.1)
and BIC (1058) among them, indicating that it offers the
most effective depiction of the mortality pattern while
taking into consideration excess zeros and sporadic higher
death counts.

In a similar vein, all models accurately replicate the
observed frequency structure for Nepal (Table 2). No
model substantially deviates from the empirical
distribution, and the p-values range from 0.26 to 0.70,
indicating acceptable to strong fits. Once more, the
Inflated Himanshu distribution produces the lowest AIC
and BIC values, demonstrating its ability to capture both
zero inflation and the existence of households with
multiple child deaths. The inflated models' consistent
performance on both datasets emphasizes how crucial it is
to account for additional zeros when simulating
uncommon family-level mortality events. the comparison
indicates that the inflated and compounded models
especially the Inflated Himanshu distribution offer
superior fit and better capture the heterogeneity in child
mortality across households, while the basic Geometric
distribution offers a reasonable approximation. These
results support the value of adaptable probabilistic models
in the analysis of demographic data with skewness, zero
inflation, and infrequent but significant high-mortality
outcomes.

CONCLUSION

The study shows that family-level child mortality trends
in Eastern Uttar Pradesh and Nepal are well captured by
probabilistic models, such as the Geometric, Himanshu,
and Inflated Geometric distributions. These models show
that while unusual multiple fatalities are adequately
represented by compounded distributions, most families
experience zero or one child death. The dependability of
the Maximum Likelihood Estimation techniques is
confirmed by consistent parameter estimations. The
results have important ramifications for public health.

Policymakers may identify high-risk families, distribute
resources effectively, and create focused interventions
like immunization campaigns, nutritional programs, and
maternal health efforts by precisely predicting mortality
trends. These models may be used to forecast future
trends in child mortality, helping to foresee both possible
multi-death situations in susceptible groups and recurring
zero-death patterns. All things considered, this modeling
approach improves evidence-based decision-making, aids
in strategic planning for health initiatives, and provides a
flexible tool that may be used in other areas with
comparable demographics.
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