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INTRODUCTION 

Infertility and maternal health complications are 

significant global challenges, necessitating highly 

accurate prediction models to improve outcomes and 

manage patient care.1,2 While IVF is a transformative 

solution, its success rates are below standard, highlighting 

the need for better predictive tools.3 Similarly, maternal 

complications like preeclampsia and preterm birth require 

early identification to reduce morbidity and mortality, 

especially in low-resource settings.4 Machine learning 

(ML) and artificial intelligence (AI) are transforming this 

landscape by analyzing vast datasets from electronic 

records to medical images, identifying complex patterns 

that enhance risk prediction, diagnosis, and personalized 

care. These AI systems provide clinicians with more 
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precise, timely information to support effective 

interventions, ultimately improving health outcomes for 

mothers and infants alike.1-3 

ML FUNDAMENTALS IN HEALTHCARE 

ML is a computational technique where models learn 

from data to make predictions without explicit 

programming.5 It is broadly categorized into supervised, 

unsupervised, and semi-supervised paradigms.6 

Supervised learning, the most common in clinical 

practice, trains a model on a dataset with known output 

labels to predict outcomes like disease diagnosis or 

pregnancy status. Algorithms like LR, RF, and XGBoost 

fall into this category.6-8 Unsupervised learning works 

with unlabeled data to discover hidden patterns, useful for 

clustering patients or reducing data complexity.7 In 

healthcare, it can identify novel patient subgroups. Semi-

supervised learning combines both labeled and unlabeled 

data, which is advantageous in medicine where fully 

labeled datasets are often limited and expensive.5,6 Hybrid 

approaches blend different ML paradigms or models, 

such as combining a deep learning model for image 

analysis with a traditional classifier for tabular data. 

These are increasingly used to produce more robust and 

accurate predictions from diverse data sources.6 

A diverse array of ML algorithms is utilized for risk 

prediction and classification within reproductive health, 

as in other healthcare domains. The optimal choice of 

algorithm often depends on the specific clinical context, 

the characteristics of the data available, and the desired 

outcome.6 Different algorithms may demonstrate superior 

performance based on factors such as dataset size, feature 

types (e.g., numerical, categorical, image), class 

imbalance, and the need for model interpretability. 

Therefore, a careful evaluation of each algorithm's 

strengths and weaknesses in relation to specific infertility 

and maternal care challenges is crucial for developing 

effective predictive and diagnostic tools. 

ML APPLICATIONS AND PERFORMANCE IN 

INFERTILITY 

ML, particularly ensemble methods like RF, SVM, and 

gradient boosting algorithms like XGBoost, along with 

deep learning architectures such as CNNs, are 

revolutionizing the diagnosis, prognosis, and treatment 

strategies within the field of infertility.2 These advanced 

computational approaches offer unprecedented 

capabilities in handling complex, high-dimensional data, 

leading to more personalized and precise interventions.2,3 

IVF implantation/live birth prediction 

RF models are extensively used to predict live birth 

outcomes in IVF cycles, aiding in critical embryo 

selection and patient counseling. A retrospective cohort 

study that compared various models for live birth 

prediction in IVF found RF to exhibit high performance, 

achieving an accuracy of 0.9406±0.0017 and an AUC of 

0.9734±0.0012. Its performance in this study was 

comparable to that of CNNs and demonstrably superior to 

simpler models such as Decision Tree, Naïve Bayes, and 

Feed forward neural networks.11,12 This indicates RF's 

capacity to discern subtle patterns in complex IVF data, 

contributing to more informed decisions regarding 

embryo transfer. Additionally, Enatsu et al employed a 

hybrid approach that combined ResNet18 (a CNN 

architecture) with RF for pregnancy prediction.13 This 

model leveraged both static day 5 embryo images and 

tabular clinical data, achieving an AUC of 71.00%.13 The 

integration of diverse data modalities further enhances the 

predictive power of RF in this context. 

SVMs stand out as the most frequently applied technique 

in studies predicting ART success, utilized in 44.44% of 

reviewed papers.9 The performance of SVM, however, 

exhibits variability across different studies and is often 

evaluated in comparison to other ML techniques. For 

instance, Mehrjerd et al reported a sensitivity of 0.76 and 

a positive predictive value (PPV) of 0.80 for SVM.12 Raef 

et al achieved an accuracy of 90.4%, sensitivity of 

90.36%, specificity of 90.44%, and an AUC of 93.74%. 

Qiu et al reported an accuracy of 0.70 and an AUC of 

0.73.13,14 

Also in IVF success prediction, SVMs show strong 

performance, with accuracies ranging from 80.4%, 

83.96%  to a high of 97.42% and AUCs from 0.739 to 

0.973, while specificity of 98.03%, AUC of 84.23%, and 

PPV of 90.14% was noted.15-19 However, in comparative 

studies, RF outperformed SVM in 83% of cases, 

highlighting that the optimal algorithm is often dataset-

specific, though Naïve Bayes showed superiority over 

SVM in two studies.9,17 Conversely, SVM demonstrated 

better performance than Decision Trees in one study, but 

XGBoost proved superior to SVM in another. These 

comparisons highlight the nuanced performance 

landscape, where algorithm choice often depends on 

specific dataset characteristics and prediction goals. 9 

An XGBoost model was used to predict ongoing 

pregnancy after hysteroscopic adhesiolysis, achieving 

exceptional AUCs of 0.987 in the training cohort and 

0.985 in the validation cohort.20 This performance 

significantly surpassed traditional classification systems 

and endometrial thickness measurements.20 For human 

embryo assessment in IVF, CNNs are the leading deep 

learning architecture, featured in 81% of studies using 

time-lapse videos.9 These models have shown high 

performance, with one achieving 97.7% accuracy after 

data augmentation.21 A notable study showed a CNN 

model outperforming 15 trained embryologists in 

assessing an embryo's implantation potential (75.26% vs. 

67.35%). This is thanks to CNNs' ability to automatically 

analyze embryo features at the pixel level. A fusion 

model combining CNNs with clinical data also achieved 

an 82.42% accuracy and a 0.91 AUC in predicting 

clinical pregnancy outcomes.22 
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Male infertility and assessment 

RF models are effective for predicting fertility outcomes 

by integrating both male and female factors. For 

intrauterine insemination (IUI) success, a study reported 

an AUC of 0.84 and an F1-score of 76.49% for predicting 

live-birth occurrence, identifying key factors like age, 

sperm concentration, and infertility duration.23, 24 Another 

study achieved 84.23% accuracy with RF for IVF 

implantation outcome prediction.16 CNNs are applied in 

male fertility assessment for automated semen analysis. A 

VGG13 CNN model was fine-tuned to assess 

spermatozoa morphology, achieving high performance 

with 97.6% sensitivity and 96.7% accuracy in 

distinguishing sperm with specific morphological 

features.25 Additionally, enhanced YOLOv8 models, 

which use CNN principles, have improved sperm 

detection and tracking, boosting precision by 1.3% and 

recall by 1.4%, which addresses limitations of traditional 

computer-assisted semen analysis (CASA) systems.25,26 

Female infertility diagnosis and conditions 

RF is an effective algorithm for diagnosing 

endometriosis, a condition with a long diagnosis time of 

6-10 years. AI-based applications for endometriosis show 

strong performance, with pooled sensitivities ranging 

from 81.7% to 96.7% and specificities from 70.7% to 

91.6%.27 SVM models are highly effective for diagnosing 

PCOS, achieving up to 96.83% accuracy and a 96.86% 

F1-score in one study.28 SVMs also predict fertility 

treatment outcomes like poor ovarian response (POR), 

which is relevant for idiopathic infertility.29 XGBoost is a 

strong algorithm for PCOS diagnosis, valued for its 

ability to handle complex data.30 This and other boosting 

algorithms are also being explored for diagnosing 

conditions like chronic endometritis (CE), with CatBoost 

achieving an AUC of 0.81 for endometriosis prediction.31 

CNNs have achieved impressive accuracies of up to 

97.74% for PCOS diagnosis.32,33 CNNs are also used in 

AI-assisted ultrasound for endometrial diseases, with an 

overall accuracy of 92.9% and high sensitivity and 

specificity.34 

ML APPLICATIONS AND PERFORMANCE IN 

MATERNAL HEALTH 

ML techniques are significantly advancing maternal 

healthcare by enabling early risk prediction, precise 

diagnosis of complications, and enhanced fetal 

monitoring. These applications hold immense potential 

for improving maternal and fetal outcomes through timely 

and personalized interventions. 

Maternal risk level prediction 

ML models like RF, XGBoost, and LR are being used to 

predict maternal and child health risks.35 RF models are 

effective in predicting various maternal and child health 

outcomes by integrating complex maternal factors. In a 

study from Oman, an RF model classified maternal risk 

levels with 75.2% accuracy, 85.7% precision, and a 73% 

F1-score.36 RF has also shown strong performance in 

predicting child development, with one study reporting a 

13% misclassification rate 37and another achieving 

remarkable accuracy of 95% in predicting child IQ 

scores.38 It has also been identified as the most effective 

algorithm for predicting gestational diabetes, surpassing 

clinician performance in some cases with a sensitivity of 

over 70%.39,40 

XGBoost is a powerful tool for predicting maternal health 

risks. A hybrid ConvXGB model, which combines 

XGBoost with deep learning, achieved a high accuracy of 

97.96% in predicting various maternal outcomes.41 

Although an RF model outperformed it in a specific 

maternal risk classification study, XGBoost has shown 

exceptional performance in other areas, such as predicting 

neonatal mortality with 99.7% accuracy.36,42 For 

preeclampsia risk prediction, XGBoost models achieved 

AUCs ranging from 0.71-0.80.43 It also demonstrated 

excellent predictive power for the mode of delivery, with 

an AUC of 90% and an accuracy of 89%.44 

LR is frequently used for predicting maternal health risks 

like preterm birth. A model designed to predict 

spontaneous preterm delivery had an AUC of 0.76 and a 

sensitivity of 0.71, showing its value in identifying at-risk 

women.45 The interpretability of LR models is a key 

advantage, as they can clearly explain the influence of 

each risk factor, making them useful for clinical decision-

making.46 

General pregnancy prediction 

LR models are commonly used to predict cumulative 

pregnancy probability. A study using regularized LR 

models predicted pregnancy over 12 and 6 menstrual 

cycles. For the 12-cycle model, L2LR achieved an AUC 

of 70.2% and a weighted F1 score of 81.8. The L1LR 

model showed similar performance with an AUC of 

69.8%. For the 6-cycle model, L2LR had an AUC of 

66.1%, and L1LR was comparable with an AUC of 

66.0%.47 The analysis concluded that L2LR and L2SVM 

generally had the highest AUCs. 

Pregnancy complication prediction/outcomes and fetal 

monitoring and imaging 

SVM models are a strong choice for preterm birth 

prediction, particularly with electrohysterogram (EHG) 

data. ML for this task generally shows high performance, 

with accuracies of 0.79 to 0.94 and AUCs of 0.54 to 

0.83.48,49 While effective, ensemble methods like gradient 

boosting machines (GBM), XGBoost, and RF often have 

a slight performance edge, with median AUCs around 

0.84 compared to SVM.50 XGBoost models are effective 

for predicting severe preeclampsia risk, achieving AUCs 

of 0.71 to 0.80.43 It was the most predictive model in the 

first trimester, with an AUC of 0.74, and reached 0.91 in 
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late pregnancy using clinical variables.43 CNNs are 

enhancing prenatal care through the automatic 

segmentation of fetal ultrasound images. A deep CNN 

model achieved a dice similarity coefficient (DSC) of 

96.84% for fetal head circumference evaluation.51These 

models have also demonstrated performance comparable 

to human technicians in classifying fetal ultrasound 

planes.52 

Hybrid models in maternal health 

Hybrid models combine different AI techniques or 

multiple data types to enhance predictive performance 

and address the "black box" problem in clinical settings. 

This approach fosters trust with clinicians by providing 

more explainable insights. For infertility prediction, a 

hybrid model using hesitant fuzzy sets (HFSs) and RF 

achieved an accuracy of 79.5% and an AUC of 0.72 for 

IVF/ICSI success, using just seven key features.53 In 

maternal health, a deep hybrid model combining an 

Artificial Neural Network and RF achieved an impressive 

95% accuracy for risk classification.31 The ConvXGB 

model, which blends XGBoost with deep learning, 

reported a 97.96% accuracy for predicting various 

maternal outcomes.41 Multi-modal models, combining 

images and tabular data, are promising for pregnancy 

prediction. One study achieved an AUC of 77.00% by 

combining a CNN with an MLP on embryo images and 

tabular data.54 However; models relying on tabular data 

often outperform image-only models due to the strong 

predictive value of expertly curated clinical data. 

METHODOLOGY USED IN REVIEW OF 

LITERATURE 

This study employed a comprehensive systematic 

literature review approach, guided by the principles of the 

preferred reporting items for systematic reviews and 

meta-analyses (PRISMA) statement, to synthesize 

existing research on ML algorithms in clinical infertility 

and maternal care. The review focused specifically on 

evolving concepts in ML algorithms in clinical infertility 

and maternal care. The primary objective was to identify, 

analyze, and discuss key findings across various 

dimensions of infertility and maternal care. 

Information sources and search strategy 

A total of 80 journals were initially identified and 

searched across scholarly databases including Scopus, 

Web of Science, IEEE Xplore, ScienceDirect, Google 

Scholar, PubMed, and ResearchGate, specifically 

focusing on the Performance of ML algorithms in clinical 

infertility and maternal care. Out of these, 26 articles 

were excluded as they did not meet the predefined 

criteria, which required direct relevance to the application 

of ML in enhancing clinical outcomes within infertility 

and maternal care. Consequently, only 46 articles were 

included and thus reviewed in this study. 

Eligibility criteria 

Studies for this review were selected if they focused on 

ML algorithms in clinical infertility and maternal care. 

The research covered a range of interventions and 

exposures, including diagnosis, prognosis, and treatment 

outcomes. Outcomes of interest included performance 

metrics like accuracy and AUC for various conditions. 

Only original research, systematic reviews, and clinical 

guidelines published in English from January 2012 to 

June 2025 were included. Editorials and conference 

abstracts were excluded. 

Study selection process 

Three independent reviewers initially screened titles and 

abstracts, removing duplicates. Subsequently, five 

reviewers independently assessed full texts against 

eligibility criteria. Discrepancies were resolved through 

discussion or consultation to reach consensus.  

Assessment of methodological quality 

The methodological quality of the included studies was 

assessed independently by the reviewers using the 

Newcastle-Ottawa scale for observational studies and the 

Cochrane risk of bias 2 tool for randomized controlled 

trials. The assessment will evaluate aspects such as 

selection bias, information bias, confounding, and 

reporting bias. Disagreements in quality assessment will 

be resolved through discussion. The results of the quality 

assessment will be summarized and considered when 

interpreting the findings of the review, particularly when 

assessing the strength of the evidence. 

Data extraction and synthesis 

Data from the included studies were systematically 

extracted into pre-designed forms. This extracted 

information encompassed the author(s) and year of 

publication, the study design and methodology where 

applicable, the key findings and contributions, and their 

implications for clinical infertility and maternal care. Any 

limitations identified by the authors of the original studies 

were also noted. A thematic synthesis approach was then 

employed to analyze the extracted data. This involved 

iteratively reading the key findings from each study, 

coding them based on emergent themes, and subsequently 

synthesizing these themes into broader categories. This 

systematic process ensured thorough and comprehensive 

review of the current literature, forming robust foundation 

for the discussion of findings presented in this study. 

ML algorithms in reproductive health  

Table 1 revealed different ML algorithms are suitable for 

specific tasks in reproductive health. RF and XGBoost are 

excellent for complex predictions with tabular data, while 

CNNs are exceptional for image analysis tasks like 

embryo selection. SVMs are strong for classification with 
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clear boundaries, and LR is valuable as an interpretable 

baseline. Hybrid models offer a sophisticated approach by 

combining strengths of multiple algorithms for complex 

challenges.  

Performance of ML algorithms in infertility 

applications 

Table 2 shows diverse and effective application of ML 

algorithms in infertility. RF and XGBoost excel in 

predictive tasks like IVF success and ongoing pregnancy 

after intervention, often outperforming traditional 

methods. SVMs are strong for diagnosing conditions like 

PCOS, showing high accuracy. CNNs are particularly 

dominant in image-based analysis, such as embryo 

selection and male fertility assessment, often surpassing 

human experts. 

Performance of ML algorithms in maternal health 

applications 

ML algorithms show strong performance in maternal 

health applications. XGBoost and hybrid models are 

particularly powerful for complex predictions showing 

high accuracy for maternal risk and preeclampsia 

prediction, with some models reaching over 97% 

accuracy, with a ConvXGB hybrid model achieving an 

impressive 97.96% accuracy for various maternal 

outcomes and XGBoost reaching an AUC of 0.91 for 

late-pregnancy preeclampsia prediction. RF is effective 

for maternal risk classification and predicting child IQ, 

while SVMs are considered optimal for preterm birth 

prediction using EHG data. CNNs are vital for image-

based tasks like fetal ultrasound segmentation, where one 

model achieved a 96.84% DSC as seen in Table 3. 

Insights on hybrid and multi-modal approaches 

Hybrid and multi-modal models are powerful tools in 

reproductive health. They combine the strengths of 

different AI techniques or integrate various data types, 

enhancing predictive performance and offering more 

explainable results. ConvXGB model achieved 97.96% 

accuracy for maternal outcomes, while multi-modal 

models for pregnancy prediction reached AUCs up to 

77.00% as gleaned in Table 4. 

Table 1: Overview of ML algorithms in reproductive health. 

Algorithm Paradigm Key strengths 
General suitability in healthcare (reproductive 

health context) 

RF3-8 
Supervised 

(Ensemble) 

Handles high-dimensional data, mitigates 

overfitting, robust, provides feature 

importance. 

Excellent for complex predictions, feature 

importance insights (e.g., IVF success, maternal 

risk). 

SVM23 Supervised 
Effective in high-dimensional spaces, good 

for classification, robust to outliers. 

Strong for classification tasks with clear 

boundaries (e.g., PCOS diagnosis, preterm birth). 

XGBoost4 
Supervised 

(Ensemble) 

High predictive power, efficient, handles 

various data types, built-in regularization. 

Superior for complex, tabular data prediction 

where high accuracy is paramount (e.g., 

pregnancy outcomes, severe preeclampsia). 

CNNS6,7-21 
Deep learning 

(Supervised) 

Exceptional for image and sequential data, 

automatic feature extraction from raw input. 

Predominant for image-based tasks (e.g., embryo 

selection, fetal ultrasound, semen analysis). 

LR21-30 
Supervised 

(Statistical) 

Highly interpretable, computationally 

efficient, provides probabilistic outcomes. 

Valuable as a baseline, for understanding risk 

factor contributions, and as a component in 

hybrid models (e.g., general pregnancy 

prediction, maternal risk factors). 

Hybrid 

models6,9-15 
Combination 

Combines strengths of different 

algorithms/data types, enhances predictive 

power, can offer improved interpretability. 

Best for complex multi-modal data challenges, 

where single algorithms may be insufficient (e.g., 

multi-modal pregnancy prediction, general 

infertility prediction). 

Table 2: Performance of ML algorithms in infertility applications. 

Applications Algorithm Key performance metrics and findings Noteworthy context/studies 

IVF 

implantation/ 

live birth 

prediction 

RF 
Accuracy: 0.9406±0.0017; AUC: 0.9734±0.0012. 

Comparable to CNNs, superior to DT, NB, FFNN. 

Used for embryo selection and patient 

counseling. 

RF (Hybrid) 
AUC: 71.00% (combined with ResNet18 CNN, static 

day 5 embryo images+tabular data). 

Enatsu et al highlights multi-modal 

data integration.11 

SVM 

Accuracy: 80.4% to 97.42%; Sensitivity: up to 0.76; 

PPV: up to 0.80; AUC: 0.73 to 0.973. Often 

outperformed by RF (83% of studies). 

Mehrjerd et al, Raef et al, Qiu et al, 

Hassan et al, Hafiz et al, Uyar et al 

and Nanni et al.12-19 

XGBoost 
AUC: 0.987 (training), 0.985 (validation) for ongoing 

pregnancy after hysteroscopic adhesiolysis. 

Superior to traditional classification 

systems.20 

CNNs 

Accuracy: 90% (before augmentation), 97.7% (after 

augmentation) for embryo classification. Outperformed 

embryologists (75.26% vs. 67.35%). Fusion model 

ACC: 82.42%, avg precision: 91%, AUC: 0.91. 

Sujata et al, Handayani et al 

predominant for image-based embryo 

assessment.21,22 

Continued. 
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Applications Algorithm Key performance metrics and findings Noteworthy context/studies 

Male sperm 

count/IUI 

success 

prediction 

RF 

IUI success: brier score: 0.158; AUC: 0.84; G-mean: 

0.739.23 Live-birth: F1-score: 76.49%; precision: 77%; 

recall: 76%; AUC: 84.60%. 24 IVF implantation ACC: 

84.23%.16 

Integrates male and female fertility 

factors. 

CNNs 

Sperm morphology: sensitivity: 97.6%; specificity: 

96.0%; accuracy: 96.7%; precision: 95.2% (VGG13 

model).25 Sperm detection/tracking (YOLOv8): +1.3% 

precision, +1.4% recall, +2.0% mAP@0.5:0.95.26  

Automated semen analysis, addresses 

CASA limitations. 

Endometriosis 

diagnosis 
RF 

Effective method, pooled sensitivities: 81.7-96.7%; 

pooled specificities: 70.7-91.6%. 

Aims to shorten time-to-

diagnosis.27,28 

PCOS 

diagnosis 

SVM 

Accuracy: 91.49-96.83%; Precision: 91.44-97.10%; 

Recall: 91.49-96.83%; F1-score: 91.42-96.86%. AUC: 

81%. 

Shows strong capability with clinical 

data.29 

XGBoost 
Consistently included in robust diagnostic frameworks; 

improves accuracy in stacked ensembles. 

Valuable for feature weight 

analysis.31 

CNNs Accuracy: 97% and 97.74%.33,34  
High proficiency in discriminating 

PCOS cases.33,34 

Chronic 

endometritis 

diagnosis 

XGBoost (via 

CatBoost) 

AUC: 0.81 for endometriosis prediction (suggests 

potential for CE). 
Badr et al32 

CNNs 
Overall accuracy: 92.9%; sensitivity/specificity: >90% 

in ultrasound diagnosis. 

Yousuf et al aims to enhance 

diagnostic accuracy for endometrial 

diseases.35 

Table 3: Performance of ML algorithms in maternal health applications. 

Applications Algorithm Key Performance Metrics & Findings Noteworthy Context/Studies 

Maternal risk 

level prediction 

RF 

Maternal risk classification: accuracy: 75.2%; 

precision: 85.7%; F1-score: 73%.36 Child IQ: 

accuracy: 95%; sensitivity: 89%; specificity: 99%.38 

Neurodevelopmental delay: AUC: 0.74%.39 

Gestational diabetes: sensitivity: >70%.40 

Effectively integrates various 

complex maternal factors. 

XGBoost 

Maternal outcome ACC: 97.96% (ConvXGB 

hybrid).41 Neonatal mortality ACC: 99.7%.42 

Preeclampsia AUC: 0.71-0.80 (external 0.57-0.70).43 

Mode of Delivery: AUC: 90%; ACC: 89%; F1: 

88%.44 

Versatile and high predictive 

power across diverse maternal 

risk assessments. 

LR 

Spontaneous preterm delivery (< 37 weeks): AUC: 

0.76 (95% CI: 0.71-0.83); Sensitivity: 0.71; 

specificity: 0.78.45  

Valuable for interpretability of 

risk factors. 

General 

pregnancy 

prediction 

LR 

12-month pregnancy: AUC: 70.2% (L2LR), 69.8% 

(L1LR). 6-month pregnancy: AUC: 66.1% (L2LR), 

66.0% (L1LR). 

Campion et al provides 

probabilistic outcomes.47 

Preterm birth 

prediction 
SVM 

Overall ML range: accuracy: 0.79-0.94; sensitivity: 

0.22-0.97; specificity: 0.86-1.00; AUC: 0.54-0.83. 

Considered optimal for EHG 

data.48,49 

Severe 

preeclampsia 

outcomes 

XGBoost 
AUC: 0.71-0.80 (external 0.57-0.70). First trimester 

AUC: 0.74. Late pregnancy AUC: 0.91. 

Ying et al.43 Enhances 

personalized predictions. 

Fetal ultrasound 

segmentation 
CNNs 

HC ellipse segmentation: DSC): 96.84±2.89. 

Comparable to SOTA. 

Improves prenatal diagnosis and 

gestational age estimation.51 

Multi-modal 

pregnancy 

prediction 

Hybrid models 

(Various 

combinations) 

AUCs from 68.80% to 77.00% (e.g., CNN + RF, 

CNN + MLP, transformer + DeFusion). 

Enatsu et al, Charnpinyo et al, 

Kim et al, Liu et al, Ouyang et 

al, Tabular data often 

outperforms image-only or 

fused methods due to strong 

correlation.11,54,56-58 

Specific hybrid 

model 

performance 

(maternal health) 

ANN + RF (Deep 

hybrid model) 

Accuracy: 95%; precision: 97%; recall: 97%; F1: 

0.97 for maternal risk classification. 

Integrates age, BP, blood sugar, 

temp, heart rate.31 

ConvXGB 

(XGBoost + DL) 

Accuracy: 97.96% for various maternal outcome 

classes. 

Combines XGBoost 

interpretability with CNN 

feature extraction.41 

Multi-modal 

Fusion (FET) 

Superior efficacy compared to single image or 

quantitative variables. 

Unspecified authors. Predicts 

clinical pregnancy following 

frozen embryo transfer. 
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Table 4: Key insights on hybrid and multi-modal approaches. 

Approach type Strengths Examples/ performance range Challenges/considerations 

Hybrid (e.g., 

deep learning + 

symbolic AI) 

Combines intuitive pattern 

recognition (deep learning) with 

explicit reasoning (symbolic AI). 

Mitigates "black box" problem, 

leading to more explainable and 

realistic scores. Crucial for 

clinical trust. 

General infertility prediction 

(Meta AI theoretical 

framework); ConvXGB 

(XGBoost + DL for maternal 

outcomes - 97.96% ACC). 

Needs validation with real-world 

patient data.59 

Multi-modal 

(Integrating 

Images, tabular 

data, etc.) 

Enhances accuracy and clinical 

value by integrating diverse data 

types. Captures complex 

relationships. 

Pregnancy prediction (post-

IVF): AUCs 68.80-77.00% by 

combining CNNs/ transformers 

with tabular data. 

Tabular data often performs better than 

image-only/ fused methods due to 

stronger correlation. Challenges include 

private datasets, variations in data 

collection, feature encoding, and image 

device resolutions, limiting direct 

comparability. 

Hybrid feature 

selection (e.g., 

HFS + RF) 

Reduces dimensionality while 

maintaining high performance; 

selects influential features. 

IVF/ICSI success: ACC: 0.795; 

AUC: 0.72; F-S\score: 0.8.53 

Effectiveness tied to the quality of 

feature selection and base algorithms. 

Deep hybrid 

(e.g., ANN + RF) 

Exceptional performance by 

combining different neural 

network and ensemble methods. 

Maternal health risk 

classification: 95% accuracy, 

97% precision, 97% recall, F1: 

0.97. 

Integrates diverse clinical features for 

robust classification.31 

 

DISCUSSION  

The application of ML algorithms is profoundly 

impacting reproductive health, offering advanced tools 

for diagnosis, prediction, and personalized care. As 

outlined in Table 1, different algorithms possess distinct 

strengths and general suitability, which guides their 

optimal use based on the type and complexity of data and 

the desired clinical outcome. This diverse landscape of 

ML approaches is revolutionizing both infertility and 

maternal healthcare. 

RF models consistently demonstrate high performance in 

complex predictions across reproductive health, as 

detailed in Tables 2 and 3. In infertility, RF has proven 

highly effective for IVF live birth prediction, achieving 

accuracy of 0.9406±0.0017 and AUC of 0.9734±0.0012, 

often outperforming simpler models for embryo selection 

and patient counseling. The hybrid RF approach by 

Enatsu et al combining RF with ResNet18 CNN and 

multi-modal data (static day 5 embryo images plus 

tabular data), further improved performance with an AUC 

of 71.00%, highlighting the benefits of integrating diverse 

data.11 RF also plays a crucial role in predicting IUI 

success, with reporting an AUC of 0.84, and in live-birth 

prediction based on male and female traits, achieving an 

F1-score of 76.49% and AUC of 84.60%.23,24 

RF is an effective algorithm in reproductive and maternal 

health, particularly for endometriosis diagnosis with AI 

applications showing sensitivities between 81.7-96.7% 

and specificities between 70.7091.6%.27 This helps to 

significantly reduce diagnosis time. In maternal health, 

RF models are effective for predicting risk levels, 

achieving 75.2% accuracy in broad classifications, and 

high performance in predicting child IQ (95% accuracy; 

and gestational diabetes (sensitivity over 70%;).36,38,40 

 

SVMs are widely used for classification, especially when 

there are clear boundaries between categories. In assisted 

reproductive technology (ART) success prediction, SVMs 

are featured in 44.44% of reviewed papers.9 They show 

accuracies for IVF success ranging from 80.4% to 

97.42% and AUCs from 0.73 to 0.97.12,13,15 However, RF 

often outperformed SVM in 83% of comparative studies, 

indicating that the best algorithm choice is often dataset-

specific. For PCOS diagnosis, SVMs achieve high 

accuracies between 91.49-96.83% and F1-scores between 

91.42-96.86%, with an AUC of 81%.29 In maternal 

health, SVM is considered optimal for preterm birth 

prediction using electrohysterogram (EHG) data.48 

XGBoost excels in high-power predictive tasks involving 

complex tabular data. In infertility, it has shown superior 

power for predicting pregnancy outcomes after 

interventions like hysteroscopic adhesiolysis, with 

exceptionally high AUCs of 0.987 (training) and 0.985 

(validation).20 XGBoost is also consistently included in 

diagnostic frameworks for PCOS due to its ability to 

handle complex datasets and its valuable feature weight 

analysis.31 In maternal health, XGBoost exhibits versatile 

and high predictive power. The ConvXGB hybrid model, 

integrating XGBoost with deep learning, achieved an 

impressive 97.96% accuracy for various maternal 

outcome classes.41 It also showed 99.7% accuracy for 

neonatal mortality prediction, and strong performance in 

preeclampsia prediction, with a late-pregnancy AUC of 

0.91.42,43 For mode of delivery, it reported an AUC of 

90% and an accuracy of 89%.44 

CNNs are exceptional for tasks involving image and 

sequential data. They are predominant in image-based 

applications in reproductive health, such as embryo 

assessment in IVF. CNNs account for 81% of studies 

using time-lapse videos and have achieved high 

accuracies, such as 97.7% after data augmentation for 
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embryo classification.21 CNN model even outperformed 

trained embryologists (75.26% vs. 67.35%) in assessing 

implantation potential. A fusion model integrating a CNN 

with clinical data also achieved 82.42% accuracy and 

0.91 AUC for predicting clinical pregnancy outcomes in 

single embryo transfer.22 In male fertility assessment, 

VGG13 CNN model achieved high performance (97.6% 

sensitivity, 96.7% accuracy) in distinguishing 

spermatozoa morphology.25 For PCOS diagnosis, CNNs 

show high proficiency, achieving accuracies of 97%, and 

97.74%.33.34 In maternal health, CNNs play a vital role in 

prenatal diagnosis via automatic segmentation of fetal 

ultrasound images, with a multi-task deep CNN achieving 

DSC of 96.84% for fetal head circumference estimation.51 

LR models serve as valuable baselines due to their 

interpretability and computational efficiency. In maternal 

health, an LR model for predicting spontaneous preterm 

delivery achieved an AUC of 0.76, offering clear insights 

into risk factor contributions.45 LR models are also 

commonly employed for general pregnancy probability 

prediction, with regularized LR models achieving AUCs 

of around 70% for 12-month pregnancy prediction.47 

Hybrid models, which combine the strengths of different 

algorithms or integrate multi-modal data, demonstrate 

enhanced predictive power. As detailed in a review, 

hybrid AI systems aim to leverage deep learning's pattern 

recognition with symbolic AI's logical reasoning, 

addressing "black box" problem and offering explainable 

insights crucial for clinical trust.59 Examples include 

ConvXGB model (XGBoost+DL) achieving impressive 

97.96% accuracy for various maternal outcome 

classifications and deep hybrid model (ANN+RF) 

showing 95% accuracy for maternal risk 

classification.31,41 Multi-modal approaches, integrating 

diverse data types like images and tabular data, have 

significantly enhanced accuracy in pregnancy prediction 

(post-IVF), achieving AUCs from 68.80-77%.11,54,56-58 

Critical insight is that tabular data often proves more 

predictive than image-only/fused methods, likely due to 

high correlation and expert-extracted features inherent in 

clinical tabular data. Hybrid feature selection methods, 

such as integrating HFSs with RF for IVF/ICSI success 

prediction also demonstrate effectiveness in 

dimensionality reduction while maintaining high 

performance.53 

CONCLUSION 

ML is revolutionizing reproductive and maternal health 

by offering powerful tools for diagnosis, prediction, and 

personalized care. Algorithms like RF, XGBoost, and 

CNNs demonstrate impressive performance in tasks such 

as IVF success prediction and disease diagnosis, often 

outperforming traditional methods. Use of hybrid and 

multi-modal models further enhances predictive power by 

integrating various data types. While promising, 

successful integration of these tools into clinical practice 

is hindered by issues like a lack of standardized data and 

"black box" nature of complex models, which can erode 

clinician trust. 

Recommendations 

To overcome these challenges and fully realize the 

potential of ML in this field, future research should focus 

on several key areas. First, there's a critical need to 

develop and implement explainable AI (XAI) techniques 

to provide transparent, interpretable insights to clinicians. 

This will foster greater confidence and facilitate clinical 

adoption. Second, efforts must be directed toward 

creating large, standardized datasets that are 

representative of diverse global populations to ensure 

models are robust and generalizable. Finally, 

collaborative initiatives involving clinicians, data 

scientists, and ethicists are essential to address data 

privacy, ensure equitable access, and establish clear 

regulatory guidelines for safe and effective deployment of 

ML in reproductive and maternal healthcare. 
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