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ABSTRACT

Infertility and maternal health complications represent significant global health challenges. The integration of
machine learning (ML) algorithms holds immense promise for improving clinical decision-making, risk stratification,
and patient management in these areas. This review explores the pivotal role of ML in identifying maternal health risk
factors contributing to infertility and optimizing reproductive outcomes. We critically examine the performance and
application of various ML algorithms, including random forest (RF), support vector machine (SVM), XGBoost,
convolutional neural networks (CNNs), and logistic regression (LR), as they are deployed to enhance predictive
modeling, diagnosis, and personalized care in reproductive medicine. Our analysis synthesizes their primary clinical
applications and typical performance metrics across key areas such as in vitro fertilization (IVF) success prediction,
early disease diagnosis (e.g., polycystic ovary syndrome (PCOS), preeclampsia, endometriosis), and comprehensive
maternal risk assessment. We highlight that while traditional models like LR offer valuable interpretability, advanced
hybrid and multi-modal approaches are increasingly demonstrating superior predictive power by effectively
integrating diverse data types, from clinical records to medical images. The report concludes by emphasizing the
transformative potential of ML in improving prognostic counseling and resource allocation within reproductive
health. However, it also underscores critical challenges that must be addressed for broader clinical adoption, including
data standardization, model generalizability across varied populations, and the development of explainable Al to
foster trust and facilitate seamless clinical integration.
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INTRODUCTION

Infertility and maternal health complications are
significant global challenges, necessitating highly
accurate prediction models to improve outcomes and
manage patient care.> While IVF is a transformative
solution, its success rates are below standard, highlighting
the need for better predictive tools.® Similarly, maternal

complications like preeclampsia and preterm birth require
early identification to reduce morbidity and mortality,
especially in low-resource settings.* Machine learning
(ML) and artificial intelligence (AI) are transforming this
landscape by analyzing vast datasets from electronic
records to medical images, identifying complex patterns
that enhance risk prediction, diagnosis, and personalized
care. These Al systems provide clinicians with more
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precise, timely information to support effective
interventions, ultimately improving health outcomes for
mothers and infants alike.!

ML FUNDAMENTALS IN HEALTHCARE

ML is a computational technique where models learn
from data to make predictions without explicit
programming.’ It is broadly categorized into supervised,
unsupervised, and  semi-supervised  paradigms.®
Supervised learning, the most common in clinical
practice, trains a model on a dataset with known output
labels to predict outcomes like disease diagnosis or
pregnancy status. Algorithms like LR, RF, and XGBoost
fall into this category.®® Unsupervised learning works
with unlabeled data to discover hidden patterns, useful for
clustering patients or reducing data complexity.” In
healthcare, it can identify novel patient subgroups. Semi-
supervised learning combines both labeled and unlabeled
data, which is advantageous in medicine where fully
labeled datasets are often limited and expensive.>® Hybrid
approaches blend different ML paradigms or models,
such as combining a deep learning model for image
analysis with a traditional classifier for tabular data.
These are increasingly used to produce more robust and
accurate predictions from diverse data sources.b

A diverse array of ML algorithms is utilized for risk
prediction and classification within reproductive health,
as in other healthcare domains. The optimal choice of
algorithm often depends on the specific clinical context,
the characteristics of the data available, and the desired
outcome.® Different algorithms may demonstrate superior
performance based on factors such as dataset size, feature
types (e.g., numerical, categorical, image), class
imbalance, and the need for model interpretability.
Therefore, a careful evaluation of each algorithm's
strengths and weaknesses in relation to specific infertility
and maternal care challenges is crucial for developing
effective predictive and diagnostic tools.

ML APPLICATIONS AND PERFORMANCE IN
INFERTILITY

ML, particularly ensemble methods like RF, SVM, and
gradient boosting algorithms like XGBoost, along with
deep learning architectures such as CNNs, are
revolutionizing the diagnosis, prognosis, and treatment
strategies within the field of infertility.> These advanced
computational ~ approaches offer  unprecedented
capabilities in handling complex, high-dimensional data,
leading to more personalized and precise interventions.>?

1VF implantation/live birth prediction

RF models are extensively used to predict live birth
outcomes in IVF cycles, aiding in critical embryo
selection and patient counseling. A retrospective cohort
study that compared various models for live birth
prediction in IVF found RF to exhibit high performance,

achieving an accuracy of 0.9406+0.0017 and an AUC of
0.9734+£0.0012. Its performance in this study was
comparable to that of CNNs and demonstrably superior to
simpler models such as Decision Tree, Naive Bayes, and
Feed forward neural networks.!''!? This indicates RF's
capacity to discern subtle patterns in complex IVF data,
contributing to more informed decisions regarding
embryo transfer. Additionally, Enatsu et al employed a
hybrid approach that combined ResNetl8 (a CNN
architecture) with RF for pregnancy prediction.!® This
model leveraged both static day 5 embryo images and
tabular clinical data, achieving an AUC of 71.00%.'> The
integration of diverse data modalities further enhances the
predictive power of RF in this context.

SVMs stand out as the most frequently applied technique
in studies predicting ART success, utilized in 44.44% of
reviewed papers.” The performance of SVM, however,
exhibits variability across different studies and is often
evaluated in comparison to other ML techniques. For
instance, Mehrjerd et al reported a sensitivity of 0.76 and
a positive predictive value (PPV) of 0.80 for SVM.!? Raef
et al achieved an accuracy of 90.4%, sensitivity of
90.36%, specificity of 90.44%, and an AUC of 93.74%.
Qiu et al reported an accuracy of 0.70 and an AUC of
0.73.1314

Also in IVF success prediction, SVMs show strong
performance, with accuracies ranging from 80.4%,
83.96% to a high of 97.42% and AUCs from 0.739 to
0.973, while specificity of 98.03%, AUC of 84.23%, and
PPV of 90.14% was noted.'>!* However, in comparative
studies, RF outperformed SVM in 83% of cases,
highlighting that the optimal algorithm is often dataset-
specific, though Naive Bayes showed superiority over
SVM in two studies.”!” Conversely, SVM demonstrated
better performance than Decision Trees in one study, but
XGBoost proved superior to SVM in another. These
comparisons  highlight the nuanced performance
landscape, where algorithm choice often depends on
specific dataset characteristics and prediction goals.

An XGBoost model was used to predict ongoing
pregnancy after hysteroscopic adhesiolysis, achieving
exceptional AUCs of 0.987 in the training cohort and
0.985 in the validation cohort.?® This performance
significantly surpassed traditional classification systems
and endometrial thickness measurements.”’ For human
embryo assessment in IVF, CNNs are the leading deep
learning architecture, featured in 81% of studies using
time-lapse videos.” These models have shown high
performance, with one achieving 97.7% accuracy after
data augmentation.?!’ A notable study showed a CNN
model outperforming 15 trained embryologists in
assessing an embryo's implantation potential (75.26% vs.
67.35%). This is thanks to CNNs' ability to automatically
analyze embryo features at the pixel level. A fusion
model combining CNNs with clinical data also achieved
an 82.42% accuracy and a 0.91 AUC in predicting
clinical pregnancy outcomes.??
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Male infertility and assessment

RF models are effective for predicting fertility outcomes
by integrating both male and female factors. For
intrauterine insemination (IUI) success, a study reported
an AUC of 0.84 and an F1-score of 76.49% for predicting
live-birth occurrence, identifying key factors like age,
sperm concentration, and infertility duration.?>?* Another
study achieved 84.23% accuracy with RF for IVF
implantation outcome prediction.!® CNNs are applied in
male fertility assessment for automated semen analysis. A
VGGI3 CNN model was fine-tuned to assess
spermatozoa morphology, achieving high performance
with  97.6% sensitivity and 96.7% accuracy in
distinguishing sperm with specific morphological
features.> Additionally, enhanced YOLOv8 models,
which use CNN principles, have improved sperm
detection and tracking, boosting precision by 1.3% and
recall by 1.4%, which addresses limitations of traditional
computer-assisted semen analysis (CASA) systems.?>26

Female infertility diagnosis and conditions

RF is an effective algorithm for diagnosing
endometriosis, a condition with a long diagnosis time of
6-10 years. Al-based applications for endometriosis show
strong performance, with pooled sensitivities ranging
from 81.7% to 96.7% and specificities from 70.7% to
91.6%.2” SVM models are highly effective for diagnosing
PCOS, achieving up to 96.83% accuracy and a 96.86%
Fl-score in one study.?® SVMs also predict fertility
treatment outcomes like poor ovarian response (POR),
which is relevant for idiopathic infertility.?’ XGBoost is a
strong algorithm for PCOS diagnosis, valued for its
ability to handle complex data.’® This and other boosting
algorithms are also being explored for diagnosing
conditions like chronic endometritis (CE), with CatBoost
achieving an AUC of 0.81 for endometriosis prediction.’!
CNNs have achieved impressive accuracies of up to
97.74% for PCOS diagnosis.’?>33> CNNs are also used in
Al-assisted ultrasound for endometrial diseases, with an
overall accuracy of 92.9% and high sensitivity and
specificity.>

ML APPLICATIONS AND PERFORMANCE IN
MATERNAL HEALTH

ML techniques are significantly advancing maternal
healthcare by enabling ecarly risk prediction, precise
diagnosis of complications, and enhanced fetal
monitoring. These applications hold immense potential
for improving maternal and fetal outcomes through timely
and personalized interventions.

Maternal risk level prediction

ML models like RF, XGBoost, and LR are being used to
predict maternal and child health risks.>* RF models are
effective in predicting various maternal and child health
outcomes by integrating complex maternal factors. In a

study from Oman, an RF model classified maternal risk
levels with 75.2% accuracy, 85.7% precision, and a 73%
Fl-score.® RF has also shown strong performance in
predicting child development, with one study reporting a
13% misclassification rate 3’and another achieving
remarkable accuracy of 95% in predicting child IQ
scores.’® It has also been identified as the most effective
algorithm for predicting gestational diabetes, surpassing
clinician performance in some cases with a sensitivity of
over 70%.%:40

XGBoost is a powerful tool for predicting maternal health
risks. A hybrid ConvXGB model, which combines
XGBoost with deep learning, achieved a high accuracy of
97.96% in predicting various maternal outcomes.*!
Although an RF model outperformed it in a specific
maternal risk classification study, XGBoost has shown
exceptional performance in other areas, such as predicting
neonatal mortality with 99.7% accuracy.’**? For
preeclampsia risk prediction, XGBoost models achieved
AUCs ranging from 0.71-0.80.* It also demonstrated
excellent predictive power for the mode of delivery, with
an AUC of 90% and an accuracy of 89%.%

LR is frequently used for predicting maternal health risks
like preterm birth. A model designed to predict
spontaneous preterm delivery had an AUC of 0.76 and a
sensitivity of 0.71, showing its value in identifying at-risk
women.* The interpretability of LR models is a key
advantage, as they can clearly explain the influence of
each risk factor, making them useful for clinical decision-
making 46

General pregnancy prediction

LR models are commonly used to predict cumulative
pregnancy probability. A study using regularized LR
models predicted pregnancy over 12 and 6 menstrual
cycles. For the 12-cycle model, L2LR achieved an AUC
of 70.2% and a weighted F1 score of 81.8. The LILR
model showed similar performance with an AUC of
69.8%. For the 6-cycle model, L2LR had an AUC of
66.1%, and L1LR was comparable with an AUC of
66.0%.%7 The analysis concluded that L2LR and L2SVM
generally had the highest AUCs.

Pregnancy complication prediction/outcomes and fetal
monitoring and imaging

SVM models are a strong choice for preterm birth
prediction, particularly with electrohysterogram (EHG)
data. ML for this task generally shows high performance,
with accuracies of 0.79 to 0.94 and AUCs of 0.54 to
0.83.4849 While effective, ensemble methods like gradient
boosting machines (GBM), XGBoost, and RF often have
a slight performance edge, with median AUCs around
0.84 compared to SVM.*® XGBoost models are effective
for predicting severe preeclampsia risk, achieving AUCs
of 0.71 to 0.80.*3 It was the most predictive model in the
first trimester, with an AUC of 0.74, and reached 0.91 in
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late pregnancy using clinical variables.” CNNs are
enhancing prenatal care through the automatic
segmentation of fetal ultrasound images. A deep CNN
model achieved a dice similarity coefficient (DSC) of
96.84% for fetal head circumference evaluation.’' These
models have also demonstrated performance comparable
to human technicians in classifying fetal ultrasound
planes.>

Hybrid models in maternal health

Hybrid models combine different Al techniques or
multiple data types to enhance predictive performance
and address the "black box" problem in clinical settings.
This approach fosters trust with clinicians by providing
more explainable insights. For infertility prediction, a
hybrid model using hesitant fuzzy sets (HFSs) and RF
achieved an accuracy of 79.5% and an AUC of 0.72 for
IVF/ICSI success, using just seven key features.® In
maternal health, a deep hybrid model combining an
Artificial Neural Network and RF achieved an impressive
95% accuracy for risk classification.’’ The ConvXGB
model, which blends XGBoost with deep learning,
reported a 97.96% accuracy for predicting various
maternal outcomes.*! Multi-modal models, combining
images and tabular data, are promising for pregnancy
prediction. One study achieved an AUC of 77.00% by
combining a CNN with an MLP on embryo images and
tabular data.”* However; models relying on tabular data
often outperform image-only models due to the strong
predictive value of expertly curated clinical data.

METHODOLOGY USED
LITERATURE

IN REVIEW OF

This study employed a comprehensive systematic
literature review approach, guided by the principles of the
preferred reporting items for systematic reviews and
meta-analyses (PRISMA) statement, to synthesize
existing research on ML algorithms in clinical infertility
and maternal care. The review focused specifically on
evolving concepts in ML algorithms in clinical infertility
and maternal care. The primary objective was to identify,
analyze, and discuss key findings across various
dimensions of infertility and maternal care.

Information sources and search strategy

A total of 80 journals were initially identified and
searched across scholarly databases including Scopus,
Web of Science, IEEE Xplore, ScienceDirect, Google
Scholar, PubMed, and ResearchGate, specifically
focusing on the Performance of ML algorithms in clinical
infertility and maternal care. Out of these, 26 articles
were excluded as they did not meet the predefined
criteria, which required direct relevance to the application
of ML in enhancing clinical outcomes within infertility
and maternal care. Consequently, only 46 articles were
included and thus reviewed in this study.

Eligibility criteria

Studies for this review were selected if they focused on
ML algorithms in clinical infertility and maternal care.
The research covered a range of interventions and
exposures, including diagnosis, prognosis, and treatment
outcomes. Outcomes of interest included performance
metrics like accuracy and AUC for various conditions.
Only original research, systematic reviews, and clinical
guidelines published in English from January 2012 to
June 2025 were included. Editorials and conference
abstracts were excluded.

Study selection process

Three independent reviewers initially screened titles and
abstracts, removing duplicates. Subsequently, five
reviewers independently assessed full texts against
eligibility criteria. Discrepancies were resolved through
discussion or consultation to reach consensus.

Assessment of methodological quality

The methodological quality of the included studies was
assessed independently by the reviewers using the
Newcastle-Ottawa scale for observational studies and the
Cochrane risk of bias 2 tool for randomized controlled
trials. The assessment will evaluate aspects such as
selection bias, information bias, confounding, and
reporting bias. Disagreements in quality assessment will
be resolved through discussion. The results of the quality
assessment will be summarized and considered when
interpreting the findings of the review, particularly when
assessing the strength of the evidence.

Data extraction and synthesis

Data from the included studies were systematically
extracted into pre-designed forms. This extracted
information encompassed the author(s) and year of
publication, the study design and methodology where
applicable, the key findings and contributions, and their
implications for clinical infertility and maternal care. Any
limitations identified by the authors of the original studies
were also noted. A thematic synthesis approach was then
employed to analyze the extracted data. This involved
iteratively reading the key findings from each study,
coding them based on emergent themes, and subsequently
synthesizing these themes into broader categories. This
systematic process ensured thorough and comprehensive
review of the current literature, forming robust foundation
for the discussion of findings presented in this study.

ML algorithms in reproductive health

Table 1 revealed different ML algorithms are suitable for
specific tasks in reproductive health. RF and XGBoost are
excellent for complex predictions with tabular data, while
CNNs are exceptional for image analysis tasks like
embryo selection. SVMs are strong for classification with
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clear boundaries, and LR is valuable as an interpretable
baseline. Hybrid models offer a sophisticated approach by
combining strengths of multiple algorithms for complex
challenges.

Performance of ML algorithms in infertility
applications

Table 2 shows diverse and effective application of ML
algorithms in infertility. RF and XGBoost excel in
predictive tasks like IVF success and ongoing pregnancy
after intervention, often outperforming traditional
methods. SVMs are strong for diagnosing conditions like
PCOS, showing high accuracy. CNNs are particularly
dominant in image-based analysis, such as embryo
selection and male fertility assessment, often surpassing
human experts.

Performance of ML algorithms in maternal health
applications

ML algorithms show strong performance in maternal
health applications. XGBoost and hybrid models are

particularly powerful for complex predictions showing
high accuracy for maternal risk and preeclampsia
prediction, with some models reaching over 97%
accuracy, with a ConvXGB hybrid model achieving an
impressive 97.96% accuracy for various maternal
outcomes and XGBoost reaching an AUC of 0.91 for
late-pregnancy preeclampsia prediction. RF is effective
for maternal risk classification and predicting child 1Q,
while SVMs are considered optimal for preterm birth
prediction using EHG data. CNNs are vital for image-
based tasks like fetal ultrasound segmentation, where one
model achieved a 96.84% DSC as seen in Table 3.

Insights on hybrid and multi-modal approaches

Hybrid and multi-modal models are powerful tools in
reproductive health. They combine the strengths of
different AI techniques or integrate various data types,
enhancing predictive performance and offering more
explainable results. ConvXGB model achieved 97.96%
accuracy for maternal outcomes, while multi-modal
models for pregnancy prediction reached AUCs up to
77.00% as gleaned in Table 4.

Table 1: Overview of ML algorithms in reproductive health.

General suitability in healthcare (reproductive

Algorithm Paradigm Key strengths health context
Supervised Handles high-dimensional data, mitigates Excellent for complex predictions, feature
RF3# P overfitting, robust, provides feature importance insights (e.g., IVF success, maternal
(Ensemble) . .
importance. risk).
SYM Supervised Effective in high-dimensional spaces, good Strong for classification tasks with clear
P for classification, robust to outliers. boundaries (e.g., PCOS diagnosis, preterm birth).
XGBoost* Supervised High predictive power, efficient, handles \SNIIIII;:E?; fﬁrazzumrz}:existat;ﬁﬁgs:ﬁ gedlctlon
(Ensemble) various data types, built-in regularization. & yisp £
pregnancy outcomes, severe preeclampsia).
CNNS67-21 Deep learning Exceptional for image and sequential data, Predominant for image-based tasks (e.g., embryo
(Supervised) automatic feature extraction from raw input. selection, fetal ultrasound, semen analysis).
Valuable as a baseline, for understanding risk
LR21-30 Supervised Highly interpretable, computationally factor contributions, and as a component in
(Statistical) efficient, provides probabilistic outcomes. hybrid models (e.g., general pregnancy
prediction, maternal risk factors).
) Combines strengths of different Best for.complex multl-modal dgta chall.enges,
Hybrid I . e where single algorithms may be insufficient (e.g.,
69.1s  Combination algorithms/data types, enhances predictive . -
models® multi-modal pregnancy prediction, general

power, can offer improved interpretability. infertility prediction)

Table 2: Performance of ML algorithms in infertility applications.

Applications

Algorithm
RF

Key performance metrics and findings

Accuracy: 0.9406+0.0017; AUC: 0.9734+0.0012.
Comparable to CNNs, superior to DT, NB, FFNN.
AUC: 71.00% (combined with ResNet18 CNN, static
day 5 embryo images+tabular data).

Accuracy: 80.4% to 97.42%; Sensitivity: up to 0.76;

Noteworthy context/studies

Used for embryo selection and patient
counseling.

Enatsu et al highlights multi-modal
data integration.'!

Mehrjerd et al, Raef et al, Qiu et al,

RF (Hybrid)

:r\rislan tation/ SVM PPV: up to 0.80; AUC: 0.73 to 0.973. Often Hassan et.al, Hafiz et al, Uyar et al
live birth outperformed by RF (83% of stud.les).. . and Ngnnl et 211..12.'19 S
prediction XGBoost AUC: 0.987 (training), 0.985 (validation) for ongoing Superior to traditional classification
pregnancy after hysteroscopic adhesiolysis. systems.?’
. 0, 1 0,
augmentation fo embryo clasificaion Outperformed  S12a €4 o, Handayani et l
CNNs ) predominant for image-based embryo

embryologists (75.26% vs. 67.35%). Fusion model

21,22
ACC: 82.42%, avg precision: 91%, AUC: 0.91. assessment.

Continued.

International Journal of Community Medicine and Public Health | November 2025 | Vol 12 | Issue 11  Page 5378



Isogun JK et al. Int J Community Med Public Health. 2025 Nov,12(11):5374-5383

Applications Noteworthy context/studies

Algorithm

performance metrics and finding
IUI success: brier score: 0.158; AUC: 0.84; G-mean:

0.739.23 Live-birth: F1-score: 76.49%; precision: 77%; Integrates male and female fertility

Male sperm recall: 76%; AUC: 84.60%. 2* IVF implantation ACC: factors.
count/IUI 84.23%.1¢
success Sperm morphology: sensitivity: 97.6%; specificity:
prediction CNNs 96.0%; accuracy: 96.7%; precision: 95.2% (VGG13 Automated semen analysis, addresses
model).?> Sperm detection/tracking (YOLOVS): +1.3%  CASA limitations.
precision, +1.4% recall, +2.0% mAP@0.5:0.95.2
Endometriosis RF Effective method, pooled sensitivities: 81.7-96.7%; Aims to shorten time-to-
diagnosis pooled specificities: 70.7-91.6%. diagnosis.?’2
Accuracy: 91.49-96.83%; Precision: 91.44-97.10%; Shows strong capability with clinical
SVM Recall: 91.49-96.83%; F1-score: 91.42-96.86%. AUC: data 2
PCOS 81%'. : : . : :
. . Consistently included in robust diagnostic frameworks;  Valuable for feature weight
diagnosis XGBoost 2 5 S
improves accuracy in stacked ensembles. analysis.
CNNs Accuracy: 97% and 97.74%,33+ Eé%“spzzggsliﬁ} in discriminating
XGBoost (via AUC: 0.81 for endometriosis prediction (suggests Badr et al®2
Chronic CatBoost) potential for CE).
zlil:gor:z:it:ltls CNNs Overall accuracy: 92.9%; sensitivity/specificity: >90% ;Z;i‘gzgizjciﬁ;:; f?onrhj:gsme trial

Applications

in ultrasound diagnosis.

diseases.®

Table 3: Performance of ML algorithms in maternal health applications.

Noteworthy Context/Studies

Algorithm

Key Performance Metrics & Findings
Maternal risk classification: accuracy: 75.2%;
precision: 85.7%; F1-score: 73%.%¢ Child 1Q:

Effectively integrates various

RF accuracy: 95%,; sensitivity: 89%; specificity: 99%.38
Neurodevelopmental delay: AUC: 0.74%.% ceppleinaenl s
Gestational diabetes: sensitivity: >70%.4
Maternal risk Mate?mal outcome ACC: 97.96% (ConvXGB . . o
Tl e o hybrid).*! Neonatal mortality ACC: 99.7%.4? Versatile and high predictive
XGBoost Preeclampsia AUC: 0.71-0.80 (external 0.57-0.70).**  power across diverse maternal
Mode of Delivery: AUC: 90%; ACC: 89%; F1: risk assessments.
88%.4
Spontaneous preterm delivery (< 37 weeks): AUC: . -
LR 0.76 (95% CI: 0.71-0.83); Sensitivity: 0.71; Waluilbi o gl biyy ol
e 45 risk factors.
specificity: 0.78.
General 12-month pregnancy: AUC: 70.2% (L2LR), 69.8% Campion et al provides
pregnancy LR (L1LR). 6-month pregnancy: AUC: 66.1% (L2LR), bpb'l' i pt 47
prediction 66.0% (LILR). Probabiiistic outcomes.
Preterm birth SVM Overall ML range: accuracy: 0.79-0.94; sensitivity: Considered optimal for EHG
prediction 0.22-0.97; specificity: 0.86-1.00; AUC: 0.54-0.83. data. 4
Severe . AUC: 0.71-0.80 (external 0.57-0.70). First trimester ~ Ying et al.** Enhances
preeclampsia XGBoost AUC: 0.74. Late pregnancy AUC: 0.91. personalized predictions.
outcomes
Fetal ultrasound CNNs HC ellipse segmentation: DSC): 96.84+2.89. Improves prenatal diagnosis and
segmentation Comparable to SOTA. gestational age estimation.>!
Enatsu et al, Charnpinyo et al,
. . Kim et al, Liu et al, Ouyang et
Multi-modal Hybrid models AUCs from 68.80% to 77.00% (e.g., CNN + RF, al, Tabular data often
pregnancy (Varlgus . CNN + MLP, transformer + DeFusion). outperforms image-only or
prediction combinations) f
used methods due to strong
correlation.'!-34.56-58
ANN + RF (Deep  Accuracy: 95%; precision: 97%; recall: 97%; F1: Integrates age, BP, blood sugar,
hybrid model) 0.97 for maternal risk classification. temp, heart rate.’!
Specific hybrid ConvXGB Accuracy: 97.96% for various maternal outcome Comblnes .X.GBOS)St
model interpretability with CNN
(XGBoost + DL) classes. T
performance feature extraction.

(maternal health)

Multi-modal
Fusion (FET)
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Superior efficacy compared to single image or
quantitative variables.

Unspecitied authors. Predicts
clinical pregnancy following
frozen embryo transfer.

Page 5379



Approach type

Hybrid (e.g., explicit reasoning (symbolic Al).
deep learning + Mitigates "black box" problem,
symbolic AI) leading to more explainable and

Multi-modal
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Table 4: Key insights on hybrid and multi-modal approaches.

Combines intuitive pattern
recognition (deep learning) with

realistic scores. Crucial for
clinical trust.

Enhances accuracy and clinical

(Integrating value by integrating diverse data
Images, tabular  types. Captures complex

data, etc.) relationships.

Hybrid feature Reduces dimensionality while
selection (e.g., maintaining high performance;
HFS + RF) selects influential features.

Deep hybrid
(e.g., ANN + RF)

Exceptional performance by
combining different neural
network and ensemble methods.

(3

General infertility prediction
(Meta Al theoretical
framework); ConvXGB
(XGBoost + DL for maternal
outcomes - 97.96% ACC).

Pregnancy prediction (post-
IVF): AUCs 68.80-77.00% by
combining CNNs/ transformers
with tabular data.

IVF/ICSI success: ACC: 0.795;
AUC: 0.72; F-S\score: 0.8.53

Maternal health risk
classification: 95% accuracy,
97% precision, 97% recall, F1:
0.97.

Challenges/considerations

Needs validation with real-world
patient data.>

Tabular data often performs better than
image-only/ fused methods due to
stronger correlation. Challenges include
private datasets, variations in data
collection, feature encoding, and image
device resolutions, limiting direct
comparability.

Effectiveness tied to the quality of
feature selection and base algorithms.

Integrates diverse clinical features for
robust classification.’!

DISCUSSION

The application of ML algorithms is profoundly
impacting reproductive health, offering advanced tools
for diagnosis, prediction, and personalized care. As
outlined in Table 1, different algorithms possess distinct
strengths and general suitability, which guides their
optimal use based on the type and complexity of data and
the desired clinical outcome. This diverse landscape of
ML approaches is revolutionizing both infertility and
maternal healthcare.

RF models consistently demonstrate high performance in
complex predictions across reproductive health, as
detailed in Tables 2 and 3. In infertility, RF has proven
highly effective for IVF live birth prediction, achieving
accuracy of 0.9406+0.0017 and AUC of 0.9734+0.0012,
often outperforming simpler models for embryo selection
and patient counseling. The hybrid RF approach by
Enatsu et al combining RF with ResNetl8 CNN and
multi-modal data (static day 5 embryo images plus
tabular data), further improved performance with an AUC
of 71.00%, highlighting the benefits of integrating diverse
data.!' RF also plays a crucial role in predicting IUI
success, with reporting an AUC of 0.84, and in live-birth
prediction based on male and female traits, achieving an
F1-score of 76.49% and AUC of 84.60%.23-*

RF is an effective algorithm in reproductive and maternal
health, particularly for endometriosis diagnosis with Al
applications showing sensitivities between 81.7-96.7%
and specificities between 70.7091.6%.%” This helps to
significantly reduce diagnosis time. In maternal health,
RF models are effective for predicting risk levels,
achieving 75.2% accuracy in broad classifications, and
high performance in predicting child 1Q (95% accuracy;
and gestational diabetes (sensitivity over 70%;).36-38:40
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SVMs are widely used for classification, especially when
there are clear boundaries between categories. In assisted
reproductive technology (ART) success prediction, SVMs
are featured in 44.44% of reviewed papers.’ They show
accuracies for IVF success ranging from 80.4% to
97.42% and AUCs from 0.73 to 0.97.'2!315 However, RF
often outperformed SVM in 83% of comparative studies,
indicating that the best algorithm choice is often dataset-
specific. For PCOS diagnosis, SVMs achieve high
accuracies between 91.49-96.83% and F1-scores between
91.42-96.86%, with an AUC of 81%.” In maternal
health, SVM is considered optimal for preterm birth
prediction using electrohysterogram (EHG) data.*8
XGBoost excels in high-power predictive tasks involving
complex tabular data. In infertility, it has shown superior
power for predicting pregnancy outcomes after
interventions like hysteroscopic adhesiolysis, with
exceptionally high AUCs of 0.987 (training) and 0.985
(validation).?’ XGBoost is also consistently included in
diagnostic frameworks for PCOS due to its ability to
handle complex datasets and its valuable feature weight
analysis.! In maternal health, XGBoost exhibits versatile
and high predictive power. The ConvXGB hybrid model,
integrating XGBoost with deep learning, achieved an
impressive  97.96% accuracy for various maternal
outcome classes.*! It also showed 99.7% accuracy for
neonatal mortality prediction, and strong performance in
preeclampsia prediction, with a late-pregnancy AUC of
0.91.#2% For mode of delivery, it reported an AUC of
90% and an accuracy of 89%.4

CNNs are exceptional for tasks involving image and
sequential data. They are predominant in image-based
applications in reproductive health, such as embryo
assessment in IVF. CNNs account for 81% of studies
using time-lapse videos and have achieved high
accuracies, such as 97.7% after data augmentation for

Page 5380



Isogun JK et al. Int J Community Med Public Health. 2025 Nov,12(11):5374-5383

embryo classification.?! CNN model even outperformed
trained embryologists (75.26% vs. 67.35%) in assessing
implantation potential. A fusion model integrating a CNN
with clinical data also achieved 82.42% accuracy and
0.91 AUC for predicting clinical pregnancy outcomes in
single embryo transfer.?? In male fertility assessment,
VGG13 CNN model achieved high performance (97.6%
sensitivity,  96.7%  accuracy) in  distinguishing
spermatozoa morphology.?> For PCOS diagnosis, CNNs
show high proficiency, achieving accuracies of 97%, and
97.74%.3334 In maternal health, CNNs play a vital role in
prenatal diagnosis via automatic segmentation of fetal
ultrasound images, with a multi-task deep CNN achieving
DSC of 96.84% for fetal head circumference estimation.>!
LR models serve as valuable baselines due to their
interpretability and computational efficiency. In maternal
health, an LR model for predicting spontaneous preterm
delivery achieved an AUC of 0.76, offering clear insights
into risk factor contributions.** LR models are also
commonly employed for general pregnancy probability
prediction, with regularized LR models achieving AUCs
of around 70% for 12-month pregnancy prediction.*’
Hybrid models, which combine the strengths of different
algorithms or integrate multi-modal data, demonstrate
enhanced predictive power. As detailed in a review,
hybrid Al systems aim to leverage deep learning's pattern
recognition with symbolic Al's logical reasoning,
addressing "black box" problem and offering explainable
insights crucial for clinical trust.*® Examples include
ConvXGB model (XGBoost+DL) achieving impressive
97.96% accuracy for various maternal outcome
classifications and deep hybrid model (ANN+RF)
showing  95%  accuracy  for  maternal  risk
classification.’'#! Multi-modal approaches, integrating
diverse data types like images and tabular data, have
significantly enhanced accuracy in pregnancy prediction
(post-IVF), achieving AUCs from 68.80-77%.!!-5456-58
Critical insight is that tabular data often proves more
predictive than image-only/fused methods, likely due to
high correlation and expert-extracted features inherent in
clinical tabular data. Hybrid feature selection methods,
such as integrating HFSs with RF for IVF/ICSI success
prediction  also  demonstrate  effectiveness  in
dimensionality reduction while maintaining high
performance.>

CONCLUSION

ML is revolutionizing reproductive and maternal health
by offering powerful tools for diagnosis, prediction, and
personalized care. Algorithms like RF, XGBoost, and
CNNs demonstrate impressive performance in tasks such
as IVF success prediction and disease diagnosis, often
outperforming traditional methods. Use of hybrid and
multi-modal models further enhances predictive power by
integrating various data types. While promising,
successful integration of these tools into clinical practice
is hindered by issues like a lack of standardized data and
"black box" nature of complex models, which can erode
clinician trust.

Recommendations

To overcome these challenges and fully realize the
potential of ML in this field, future research should focus
on several key areas. First, there's a critical need to
develop and implement explainable AI (XAI) techniques
to provide transparent, interpretable insights to clinicians.
This will foster greater confidence and facilitate clinical
adoption. Second, efforts must be directed toward
creating large, standardized datasets that are
representative of diverse global populations to ensure
models are robust and generalizable. Finally,
collaborative initiatives involving clinicians, data
scientists, and ethicists are essential to address data
privacy, ensure equitable access, and establish clear
regulatory guidelines for safe and effective deployment of
ML in reproductive and maternal healthcare.
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