Review Article

DOI: https://dx.doi.org/10.18203/2394-6040.ijcmph20252940

Reimagining mental health: the role of artificial intelligence and brain computer interfaces in advancing mental health care

Shreevallabh A. Deshmukh¹, Namita Deshmukh², Avinash Borkar^{2*}

¹N. K. Gokhale Junior College of Science, Akola, Maharashtra, India

Received: 21 August 2025 Accepted: 15 September 2025

*Correspondence:

Dr. Avinash Borkar,

E-mail: avinash.borkar84@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

This review elucidates the transformative impact of artificial intelligence (AI) on the diagnosis and management of prevalent mental health conditions. It highlights real world applications that are currently augmenting clinical decisions and refining therapeutic strategies, moving the field beyond traditional, subjective paradigms. Furthermore, this paper projects a future in which the confluence of AI and brain computer interfaces (BCIs) will catalyze revolutionary treatment paradigms, building upon precursors like deep brain stimulation. As neurotechnology continues its rapid advancement, AI is poised to evolve from a sophisticated decision support tool into an active therapeutic agent, directly integrated with the human brain. This synergy promises to usher in an era of precision mental healthcare, characterized by personalized, proactive, and highly effective interventions. This exploration also critically examines the profound ethical and societal challenges that must be navigated to ensure this technological evolution serves humanity equitably and responsibly.

Keywords: AI, Brain computer interfaces, Mental health, NLP, Ethical challenges

INTRODUCTION

Mental health is a cornerstone of human well-being and fulfillment. According to the World Health Organization (WHO), it is defined as "a state of wellbeing in which individuals realize their own potential, manage everyday stresses, work productively, and contribute meaningfully to their communities". However, achieving this ideal is still a major challenge for much of the global population, with over one billion people currently affected by mental or substance use disorders. Anxiety disorders alone impact over 300 million people globally, contributing to significant disability and productivity loss. These conditions are among the leading causes of disability worldwide and contribute substantially to early mortality. Alarmingly, this burden is increasing across all levels of sociodemographic development.

Current mental health systems are under strain. Right now, diagnosis often depends on subjective patient reports and clinical judgment, which can make results vary a lot. Treatment is often a slow process of trial and error, during which patients remain symptomatic and healthcare systems bear ongoing costs without guaranteed results.³

Artificial intelligence (AI) is quickly becoming a gamechanging tool in mental healthcare. By studying massive and complex sets of data, AI can provide faster, more accurate, and personalized diagnostic and treatment support.⁴ This new field known as computational psychiatry is already proving useful for improving care pathways for mental health disorders. AI enabled tools can reduce misdiagnosis, shorten time to effective treatment, and optimize resource use across mental health services.⁵ Moreover, the convergence of AI with emerging technologies like BCI and adaptive neural implants could one day let clinicians' step in directly in dysfunctional

²Department of Community Medicine, Dr. Rajendra Gode Medical College, Amravati, Maharashtra, India

brain circuits shifting from symptom management to real time modulation of brain activity.⁶

This article aims to introduce the emerging field of computational psychiatry, showcasing how AI is being used to improve diagnostic accuracy, personalize treatment, and accelerate care delivery.

CURRENT CLINICAL APPLICATION

From language analysis to predictive modelling and neuroimaging interpretation, AI is expanding the frontiers of early detection and precision diagnosis.

Natural language processing for early symptom detection

Natural language processing (NLP) enables AI systems to analyze language as a reflection of cognitive and emotional health. Because mental health conditions often alter how individuals speak or write, these linguistic shifts become measurable biomarkers. AI can process vast amounts of unstructured text clinical notes, patient self-reports, chat transcripts, and even anonymized social media data to detect subtle language features linked to obsessivecompulsive disorder (OCD) and anxiety.⁷ For example, OCD patients may exhibit compulsive repetition or excessive focus on certainty related language, while individuals with anxiety disorders may use catastrophic or absolutist phrases. These patterns can be automatically detected by trained AI systems, enabling earlier and more consistent identification than is typically feasible through traditional clinical interviews.

Publicly available platforms like Woebot and Wysa AI powered mental health chatbots demonstrate how NLP can offer low cost, scalable first line support. These tools not only deliver psychoeducation and CBT informed interactions but also triage at risk individuals for human follow up, enhancing system level responsiveness and efficiency. 8,9

Policy takeaway

NLP enabled screening tools can be integrated into primary care and digital mental health platforms to extend reach, reduce bottlenecks, and promote early intervention especially in underserved populations and predictive modeling for risk stratification and preventive care.

Machine learning

Machine learning (ML) models excel at identifying patterns that predict future mental health deterioration. By analyzing diverse datasets such as electronic health records (EHR), genomics, wearables (e.g., sleep and activity tracking), and behavioral data AI systems can flag individuals at elevated risk for anxiety or OCD related episodes. For instance, models have shown the ability to predict, with high accuracy, the onset of a depressive or anxiety episode based on subtle combinations of sleep

disruption, social withdrawal, language use, and family history. These models are already being used in large telehealth networks and hospital systems to anticipate non-adherence, forecast relapse, and optimize patient follow up. 10,11

Policy takeaway

Predictive analytics needs to be built into population-level mental health screening programs, enabling resource allocation to shift from reactive crisis management to proactive, targeted care delivery.

AI-assisted neuroimaging (fMRI/EEG) for precision diagnostics

Functional magnetic resonance imaging MRI (fMRI) and electroencephalogram (EEG) provide rich data on brain activity, but their complexity limits interpretation through conventional analysis. AI particularly deep learning can decode these high dimensional datasets to reveal hidden neural patterns associated with psychiatric conditions. ¹²

For OCD, AI has been used to detect dysfunctions in the cortico-striato-thalamo-cortical (CSTC) loop, a brain circuit implicated in obsessive thoughts and compulsive behaviors. Similarly, AI models can track neural connectivity changes over time, providing biomarkers for diagnosis, patient stratification, and real time monitoring of treatment response.¹³

Policy takeaway

National mental health frameworks should support AI integration into neurodiagnostic workflows, to both improve diagnostic precision and facilitate data driven clinical trials for next generation therapeutics.

THE FUTURE: AI AND BCI CONVERGENCE IN MENTAL HEALTH

Closed loop brain-computer interfaces: real time, responsive intervention

Imagine a "neurological pacemaker" that doesn't just wait for dysfunction it predicts and prevents it. Closed loop BCIs combine real time brain monitoring with intelligent AI algorithms capable of recognizing pathological brain patterns before symptoms manifest. When such a pattern is detected whether a panic attack, obsessive urge, or intrusive thought the system delivers a low energy, highly targeted neurostimulation pulse to interrupt the process at the circuit level. 14,15

Policy takeaway

This model could redefine care for patients who are unresponsive to medication or psychotherapy, reducing hospitalization rates, emergency visits, and long-term disability. Strategic investment in such adaptive

neurotechnologies aligns with public health priorities around chronic disease prevention and precision intervention (Figure 1).¹⁴

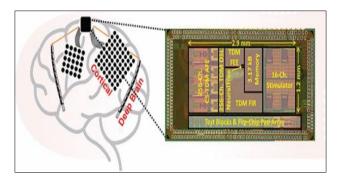


Figure 1: Closed-loop neurostimulation.

AI-augmented neurofeedback: empowering self-regulation

Traditional neurofeedback is limited in scope and effectiveness, often relying on generalized brainwave training. In contrast, AI powered neurofeedback systems use high density brain signals (via EEG or implanted sensors) to decode more specific, actionable neural signatures. These are translated into real time and user-friendly feedback such as virtual reality environments, interactive soundscapes, or gamified platforms where patient control over their mental state becomes visible and trainable. ^{16,17}

Policy takeaway

This approach builds psychological resilience and behavioral independence, enabling scalable, non-invasive interventions that reduce dependency on continuous clinical contact. It could be particularly valuable in school mental health programs, veteran care, or high-risk populations.

Predictive psychiatry and the "digital twin"

AI now allows us to build digital twins of a patient's brain dynamic, computational models trained on their own genomic, clinical, behavioral, and imaging data. These virtual replicas can simulate how an individual might respond to different treatments before administering them, vastly reducing risk. For example, clinicians could forecast how a particular selective serotonin reuptake inhibitor (SSRI) might interact with that individual's neurobiology, whether deep brain stimulation is likely to be effective, or which psychotherapeutic strategies may yield the best long-term outcomes.¹⁰

Policy takeaway

The digital twin concept supports evidence based, individualized treatment planning and opens the door for in silico clinical trials, significantly reducing time, cost,

and risk associated with traditional trial-and-error approaches. Digital phenotyping in clinical diagnosis: digital phenotyping, also known as personal sensing, is a technology-driven method that leverages data from personal digital devices particularly smartphones to assess and anticipate psychological states, behavioral patterns, and potential mental health disorders. This approach uses to improve conventional technology to modern technology, which can lead to the development of precision medicine and clinical screening. Screening of clinical data by using digital phenotyping to detect first sign of schizophrenia, depression. Clinical data collected from smart watches and mobiles can replace the conventional technologies used in precision medicine. ¹¹

ETHICAL CONSIDERATIONS IN AI POWERED PSYCHIATRY

As AI increasingly integrates into mental health care, it brings powerful tools for diagnosis, treatment, and long-term support. But alongside this promise comes a host of ethical and professional challenges that future physicians must grapple with especially those entering psychiatry, neurology, and digital medicine. Understanding these complexities is not just academic it's foundational to practicing medicine responsibly in the 21st century.

Neural data: the most personal data on earth

BCIs and AI systems can, in theory, monitor thought patterns, emotional states, and even intentions. This means patient data could include real time brain activity, cognitive processes, and deeply personal psychological states. The clinician will be responsible for protecting not just physical or behavioral health data, but potentially a patient's inner world. That requires understanding technologies like homomorphic encryption (data stays private even during analysis) and federated learning (models learn from data without moving it off the device). Ethics demands we treat neural data with the sanctity it deserves. ^{14,18}

Informed consent and the malleable mind

Unlike medications or talk therapy, AI based neuro technologies may directly alter cognition, mood, or personality traits. This raises difficult questions: Can a patient truly give informed consent to something that might change who they are? What if unintended side effects alter emotional capacity or decision making? The future doctor, will be navigating a complex space where identity, autonomy, and medical responsibility overlap. Consent should not be just a signature on paper it's an evolving, continuous process that may require new models of shared decision making, in the light of AI.¹⁸

Algorithmic bias

AI is only as good as the data it's trained on. If most training datasets come from affluent, white, Western

populations (as many do), then the AI may underdiagnose or misdiagnose people from underrepresented backgrounds especially those from different cultures, languages, or socioeconomic statuses. 18-20

The algorithmic bias can be reduced if training datasets are diversified ethnically, socioeconomically, and culturally, performing algorithmic audits to identify and correct bias regularly, involving interdisciplinary review panels (e.g., clinicians, social scientists, ethicists) in AI development and supporting community-based research that includes underrepresented voices from the outset.

Equality concerns

Advanced AI and BCI technologies are finance-intensive. Without deliberate policies, there's a real danger of a "neuro-enhancement divide" where wealthy individuals can access cognitive enhancements or real time mental health support, while everyone else is left with overburdened systems and outdated care. Developing open-source tools for low-cost mental health screening and support and creating a tiered access systems where essential services are universally available, with advanced features as optional can help resolve this issue. ¹⁸

AI versus clinical judgment: Who's driving the diagnosis?

There's growing concern that overreliance on AI could lead to "decision fatigue" or "clinical deskilling." In other words, if AI becomes the de facto diagnostic tool, some doctors may become passive followers of algorithms instead of critical thinkers. Worse, patients may lose trust if doctors can't clearly explain why a particular decision was made. One of the solutions can be designing decision support, not decision making, tools. AI should enhance, not replace, clinical reasoning. Making it mandatory that final diagnostic/treatment decisions rest with clinicians will keep humans in the loop and AI will not completely replace clinical judgement.²⁰

Though the integration of AI into mental healthcare offers transformative potential, unchecked or unethical deployment can lead to critical fallacies errors not just in data, but in dignity, diagnosis, and decision-making.

CONCLUSION

AI is transforming mental health care by enhancing diagnostic accuracy and treatment personalization through tools like NLP and predictive modeling, which analyze language patterns, behavior, and biological markers to identify conditions like OCD and anxiety early and precisely. AI also interprets complex neuroimaging data (fMRI, EEG), revealing dysfunctional brain circuits and enabling precision psychiatry. Cutting edge interventions such as closed loop BCIs and AI powered neuro feedback allow real time modulation of brain activity, marking a shift from passive symptom management to proactive

neural correction. Additionally, AI enables the development of digital twins personalized virtual brain models to simulate treatment outcomes and uses digital phenotyping via smartphones and wearables to detect early signs of mental illness. However, these innovations raise serious ethical challenges, including neural data privacy, algorithmic bias, cognitive consent, and equity in access to advanced care. Crucially, while AI holds great promise, it must remain a decision-support tool rather than a replacement for clinical judgment, preserving the clinician's critical thinking role and ensuring patient trust

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

REFERENCES

- 1. Arias D, Saxena S, Verguet S, Kestel D, Chisholm D. Quantifying the global burden of mental disorders and their economic value. eClin Med. 2023;54:101675.
- 2. Masoumi SJ. Applications and efficacy of artificial intelligence in obsessive compulsive disorder: A narrative review. J Nurs Rep Clin Pract. 2025;3(6):601-8.
- 3. Aboraya A, Rankin E, France C, El-Missiry A, John C. The reliability of psychiatric diagnosis revisited: The clinician's guide to improve the reliability of psychiatric diagnosis. Psychiatry (Edgmont). 2006;3(1):41-50.
- 4. Olawade DB, Wada OZ, Odetayo A, David-Olawade AC, Asaolu F, Eberhardt J. Enhancing mental health with artificial intelligence: Current trends and future prospects. J Med Surg Public Health. 2024;3:100099.
- 5. Vasilchenko KF, Chumakov EM. Current status, challenges and future prospects in computational psychiatry: a narrative review. Consort Psychiatr. 2023;4(3):33-42.
- 6. Shih JJ, Krusienski DJ, Wolpaw JR. Brain-computer interfaces in medicine. Mayo Clin Proc. 2012;87(3):268-79.
- 7. Chandran D, Robbins DA, Chang CK, Shetty H, Sanyal J, Downs J, et al. Use of natural language processing to identify obsessive compulsive symptoms in patients with schizophrenia, schizoaffective disorder or bipolar disorder. Sci Rep. 2019;9(1):14146.
- 8. Kim J, Pacheco JPG, Golden A, Aboujaoude E, van Roessel P, Gandhi A, et al. Artificial intelligence in obsessive-compulsive disorder: A systematic review. Curr Treat Options Psychiatry. 2025;12(1):23.
- 9. Anand K, Srivastava N. The role of WYSA: An experimental study on chatbot assistance for wellbeing among adults with anxiety, depression, and stress. Int J Indian Psychol. 2025;13(2):670-85.
- 10. Zhang L, Zhao S, Yang Z, Zheng H, Lei M. An artificial intelligence tool to assess the risk of severe mental distress among college students in terms of demographics, eating habits, lifestyles, and sport

- habits: an externally validated study using machine learning. BMC Psychiatry. 2024;24(1):581.
- 11. Waring OM, Majumder MS. Introduction to digital phenotyping for global health. In: Leveraging Data Science for Global Health. 2020;251-61.
- 12. Akhtar ZB, Rozario VS. AI perspectives within computational neuroscience: EEG integrations and the human brain. Artif Intell Appl. 2025;3(2):145-60.
- 13. Hervé E, Mento G, Desnous B, François C. Challenges and new perspectives of developmental cognitive EEG studies. Neuroimage. 2022;260:119508.
- 14. Shoaran M. Next generation closed loop neural interfaces: circuit and AI driven innovations. IEEE Solid State Circuits Mag. 2023;15(4):41-9.
- 15. Belkacem AN, Jamil N, Khalid S, Alnajjar F. On closed loop brain stimulation systems for improving the quality of life of patients with neurological disorders. Front Hum Neurosci. 2023;17:1085173.
- 16. Thakkar A, Gupta A, De Sousa A. Artificial intelligence in positive mental health: a narrative review. Front Digit Health. 2024;6:1280235.
- Ford TJ, Buchanan DM, Azeez A, Benrimoh DA, Kaloiani I, Bandeira ID, et al. Taking modern

- psychiatry into the metaverse: Integrating augmented, virtual, and mixed reality technologies into psychiatric care. Front Digit Health. 2023;5:1146806.
- 18. Tilala MH, Chenchala PK, Choppadandi A, Kaur J, Naguri S, Saoji R, et al. Ethical considerations in the use of artificial intelligence and machine learning in health care: A comprehensive review. Cureus. 2024;16(6):e62443.
- 19. Bose A, Dutta B, Taramol KG, Sarkar M, Chatterjee S, Majumdar AC. Ethical considerations in the era of artificial intelligence: implications for mental health, well-being, and digital health. South East Eur J Public Health. 2024;1397-419.
- 20. Fisher CE. The real ethical issues with AI for clinical psychiatry. Int Rev Psychiatry. 2024;37(1):14-20.

Cite this article as: Deshmukh SA, Deshmukh N, Borkar A. Reimagining mental health: the role of artificial intelligence and brain computer interfaces in advancing mental health care. Int J Community Med Public Health 2025;12:4819-23.