Original Research Article

DOI: https://dx.doi.org/10.18203/2394-6040.ijcmph20253228

Factors associated with adherence to anti-hypertensive medication among patients attending a secondary referral hospital, in Kirinyaga county, Kenya

Beatrice Muchiga1*, Alice Lakati2, Samson Ndege3

Received: 30 June 2025 Revised: 09 August 2025 Accepted: 16 September 2025

*Correspondence: Beatrice Muchiga,

E-mail: beatricemuchiga@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: In Kenya, hypertension is rising, but adherence levels are poorly documented. The purpose of this study was to assess the level of adherence to antihypertensive medication and identify the patient- and health system-related factors influencing adherence among hypertensive patients in Kirinyaga County.

Methods: This descriptive cross-sectional study assessed medication adherence among 237 hypertensive patients aged 18–60 years at Kerugoya County Referral Hospital between October and December 2024. Systematic sampling was used. Data was collected using a structured questionnaire incorporating the MMAS-8 and analyzed using SPSS with descriptive and inferential statistics.

Results: Slightly more than a third of patients did not take their hypertension medication as prescribed. 39% (n=93) lacked health insurance and married individuals were more likely to adhere than the unmarried, while higher hospital fees were linked to non-adherence. Two-thirds had comorbidities and patients with diabetes (89%, n=82), those who monitored their blood pressure at home (91%, n=136) and those aware that skipping medication worsens hypertension (89%, n=133) showed better adherence. Resources and education were generally available. Longer doctor waits times discouraged adherence. Adherent patients were 6 times more likely to report no side effects (OR = 6.058) and more likely to spend less time at the pharmacy (OR=0.977).

Conclusions: This study recommends strengthening health education on adherence, especially regarding home blood pressure monitoring and the risks of missed doses. The facilities should reduce waiting times, sensitize on NHIF enrollment. Further research is necessary to explore the role of social support in promoting adherence.

Keywords: Adherence to anti-hypertensive medication, Health system factors, Patient-related factors

INTRODUCTION

Hypertension is a global public health challenge affecting both developed and developing nations (Abu et al, 2018). Globally, about 1.13 billion people are hypertensive, with two-thirds living in Low- and Middle-Income Countries (LMICs) and prevalence increases with age, affecting approximately 50% of people over 60 years (WHO, 2019). Hypertension remains one of the leading causes

of morbidity and mortality due to its association with cardiovascular and renal complications. In Africa, the prevalence ranges from 22–46%, driven by poor health system capacity and limited access to care.² Sub-Saharan Africa reports a prevalence of about 30%. The epidemiologic transition and changing lifestyle factors in LMICs have further contributed to the rising burden.³ In Kenya, the adult hypertension prevalence is 24% and cardiovascular diseases (CVDs) account for 6.1% to 8%

¹Department of Epidemiology and Medical Statistics, Moi University, Kenya

²AMREF International University, Nairobi, Kenya

³Moi University, Eldoret, Kenya

of deaths, with autopsies suggesting an even higher proportion (over 13%) of cause-specific adult deaths due to CVDs.⁴ The 2015 Kenya Stepwise survey reported that one in four Kenyans is hypertensive, yet only 12% are on treatment. Notably, the Central and Eastern regions of Kenya reported higher rates of raised blood pressure than other counties. Kirinyaga county, one of the counties in the Central region, records a higher hypertension prevalence than the national average and is considered among the counties with the highest burden of the disease. Data from the Kenya National Bureau of Statistics indicate a sharp rise in diagnosed hypertension cases: 11,712 in 2018, 17,079 in 2019 and 16,002 by September 2020. Hypertensive diseases consistently ranked among the top five causes of both morbidity and mortality during this period. In response, the Healthy Heart Africa (HHA) programme was launched in the county in 2015 by AMREF Health Africa to improve screening and treatment.5

Hypertension management involves pharmacological interventions such as healthy diet, regular exercise and weight control, as well as pharmacological therapy using various classes of antihypertensive medications like diuretics, beta-blockers, ACE inhibitors and ARBs.⁶ While effective treatments exist, their success depends largely on patient adherence to prescribed therapy. Medication adherence is the extent to which a patient's behavior aligns with medical advice regarding medication intake, lifestyle and diet. Globally, poor adherence remains a concern, especially in LMICs. Even in high-income settings, adherence is estimated at only 50%, with much lower levels in low-resource settings. At Kenyatta National Hospital (KNH), adherence was reported at 31.8%, with only 26% of patients achieving adequate blood pressure control.⁷

Adherence is affected by numerous factors. These include medication-related issues (side effects, dosing frequency, cost), patient-related factors (age, knowledge, beliefs, comorbidities) and systemic issues (provider-patient communication, drug availability, access to health services). Additionally, health literacy and patient involvement are key determinants in maintaining long-term medication use and lifestyle changes. 10

Problem statement

Despite adherence being recognized as a key strategy in the effective management of hypertension, adherence levels remain low globally particularly in LMICs. In Kenya, hypertension is increasingly prevalent; however, the status of adherence to antihypertensive medication remains poorly documented.

Specifically, in Kirinyaga County, the level of adherence and the localized factors influencing it are largely unknown. This knowledge gap persists despite a steady rise in hypertension cases within this Central Region the county. The Central and Eastern regions of Kenya have consistently reported higher rates of raised blood pressure compared to other parts of the country. Between 2018 and 2020, the number of diagnosed hypertension cases in Kirinyaga County doubled, with hypertensive diseases consistently ranking among the top five causes of both morbidity and mortality. Hospital admissions and deaths linked to hypertension and its complications have also increased during this period.

The absence of empirical data on medication adherence and its associated factors in Kirinyaga County limits the capacity of healthcare providers and policymakers to design targeted, locally contextualized interventions. Understanding the extent of adherence and the patient-and health-system-related factors that influence it is critical for effectively addressing the burden of hypertension in the county.

Objectives of the study

To determine the adherence to anti-hypertensive medication among hypertensive patients attending a secondary Referral Hospital in Kirinyaga County, Kenya. To describe patient-related factors associated with adherence to anti-hypertensive medication among hypertensive patients attending a secondary Referral Hospital in Kirinyaga County, Kenya. To describe health system related factors associated with adherence to anti-hypertensive medication among hypertensive patients attending a secondary Referral Hospital in Kirinyaga County, Kenya.

METHODS

This study employed a descriptive cross-sectional design to assess medication adherence among hypertensive patients at Kerugoya County Referral Hospital (KCRH), a secondary referral hospital in Kirinyaga County, Kenya. The study population consisted of hypertensive patients aged 18–60 years attending the hospital's medical outpatient clinic. Data were collected from a sample of 237 patients between mid-October and December 2024. Systematic sampling was used, selecting every 2nd patient attending the clinic based on daily turnout. Eligibility criteria included patients aged over 18 years with a confirmed diagnosis of hypertension and on medication for at least six months. Excluded were patients without proof of medication use and those too ill for outpatient participation.

Quantitative data were collected through a structured questionnaire, incorporating the 8-item Morisky medication adherence scale (MMAS-8) to assess adherence. Patients scoring 8 were classified as adherent; those with low or moderate scores were considered non-adherent. Data were analyzed using IBM SPSS version 27. Descriptive statistics (frequencies, percentages, means) were used to summarize demographic and clinical variables. Inferential analysis involved chi-square tests, t-tests, Mann–Whitney U tests

and logistic regression to explore associations between adherence (dependent variable) and individual or health system-related factors (independent variables). Statistical significance was set at p<0.05.

Ethical approval was obtained from the relevant ethical review body and informed consent was secured from all participants. Confidentiality and anonymity were strictly maintained throughout the study.

RESULTS

Adherence

The majority of respondents (63%, n=149) took their antihypertensive medication as prescribed though slightly more than a third (37%, n=86) did not.

Demographic and socio-economic characteristics

As indicated in Table 1, the majority of the patients (85%, n=202) were women and married (88%, n=209). Each patient had an average of 3.4 children (SD=1.69) (Table 2). Most of the patients had completed primary school (58%, n=137) and worked as farmers (76%, n=180) and 60% (n=144) of the participants had medical insurance. Respondents' ages ranged from the youngest at 20 years to the oldest at 65 years, with a mean of 51 years.

Figure 1 illustrates the distribution of age by gender. The frequency of adherence differed significantly depending on marital status, $\chi 2$ (1, N=235) =4.726, p=0.030. The other socio-demographic factors were not significant. However, when comparing the ages between men and women in relation to medication adherence, there was no statistically significant difference in age between non-adherent individuals (M=50.77, SD=7.68) and adherent individuals (M=51.72, SD=7.56) (p=0.358). The socioeconomic attributes of the respondents are tabulated in Table 3.

The median monthly income for patients was Kshs. 2800. Conversely, the median monthly expenditure for transportation and hospital fees was Kes. 110 and Kshs. 100, respectively. Table 4 presents the relationship between medication adherence and socio-economic factors: age, number of children, monthly income and hospital spending. Most variables showed no significant differences, except hospital spending, where non-adherent incurred significantly higher patients fees (MD=Kshs.500) compared adherent ones to (MD=Kshs.100, p<0.001).

Patient-related factors

This study explored patient-related factors influencing medication adherence, including duration hypertension, behaviors and comorbidities. The median hypertension duration was 4 years (range: 1-37). As shown in table 5, few patients reported smoking (2%) or alcohol use (10%). Most monitored their blood pressure at home (85%) and kept clinic appointments (89%). Additionally, 86% understood that missing a single dose could impact their blood pressure. Two-thirds (66%) had at least one comorbidity, with diabetes being the most common (83%), followed by arthritis (4%) and other conditions (19%) such as heart disease, depression, HIV and stroke. Table 6 shows the association between patient-related characteristics and medication adherence. Adherence was significantly higher among those who monitored blood pressure at home (p=0.001), believed that missing a single dose affects blood pressure (p=0.001) and those with diabetes (p=0.025). Other factors, including smoking, alcohol use, clinic attendance and other comorbidities, were not significantly associated with adherence (p>0.05).

Health-system related factors

Table 7 summarizes health system factors related to service and supply availability. Most patients (98%) reported receiving hypertension care when needed, with 89.5% indicating that healthcare providers were available to assist. Drugs were readily available for 76% of respondents. Additionally, 98% received instructions on medication use and nearly 90% were provided with hypertension-related education materials. The association between medication adherence and availability of services is shown in Tables 8.

Adherence was more frequently associated with the availability of healthcare service providers (p=0.000), availability of drugs in the hospital pharmacy (p=0.000), receiving hypertension care when needed (p=0.017), being given instructions on how to take medicines (p=0.048) and receiving health education materials on hypertension (p=0.000) than non-adherence. Another key aspect of the healthcare system was waiting time at service points. Patients experienced the longest waits when seeing a doctor or clinician (median=120 minutes). followed by the laboratory (median=30 minutes) and the pharmacy (median=15 minutes). Longer waiting times negatively affected adherence, as non-adherent patients waited much longer to see a doctor (133 vs. 108 minutes, p=0.001) and at the pharmacy (139 vs. 98 minutes, p=0.000) compared to adherent patients (Table 8).

Table 1: Demographic characteristics of the patients.

Characteristic		N	%
	Female	202	85.2
Gender	Male	35	14.8
	Total	237	100.0

Continued.

Characteristic				N	%
	Married			209	88.2
	Single/Neve	r married		14	5.9
Marital status	Separated/D	ivorced		10	4.2
	Widowed			4	1.7
	Total			237	100.0
Education level	Primary			137	57.8
	Secondary			69	29.1
	No formal e	ducation		26	11.0
	College/Tert	iary		4	1.7
	University			1	0.4
	Total			237	100.0
	Farming			180	76.3
	Business			30	12.7
	Self			15	6.4
Employment	Formal			6	2.5
	Pensioner			3	1.3
	Unemployed	Unemployed			0.8
	Total			236	100.0
Has health	Yes			144	60.8
insurance	No			93	39.2
insui ance	Total			237	100.0
	Yes			234	99.2
Has children	No			2	0.8
	Total			236	100.0
	Female	M=51.25	Min=20.00	Max=65.00	SD=7.67
Age distribution	Male	M=51.57	Min=37.00	Max=60.00	SD=7.37
	Total	M=51.30	Min=20.00	Max=65.00	SD=7.61

Table 2: Association between medication adherence and patient's demographic characteristics.

Chamatanistics	Characteristics		Adherent	Significant at 11/0 05
Characteristics		N	N	Significant at p≤0.05
Gender	Female	69	131	
	Male	17	18	χ2=2.542, df=1, p=0.111
	Total	86	149	
	Others	15	12	_
Marital status	Married	71	137	χ2=4.726, df=1, p=0.030
	Total	86	149	
	No	1	1	_
Has children	Yes	85	147	Fisher's exact p=1.000
	Total	86	148	
	No formal education	5	21	_
Education level	Primary	55	80	χ2=4.447, df=2, p=0.108
	≥Secondary level	26	48	
	Others	25	31	_
Employment	Farming	60	118	χ2=2.202, df=1, p=0.138
	Total	85	149	
II aa baalth	No	39	54	
Has health	Yes	47	95	χ2=1.891, df=1, p=0.169
insurance	Total	86	149	

Table 3: Socio-economic factors.

Factor	N	Mean	Median	SD	Min	Max
Monthly income	21	5077.83	2800	7292.9	200	50000
Monthly Fare	32	200.82	110	268.92	20	3000
Monthly spending in hospital fees	85	420.92	100	608.44	100	4000
Number of children		3.42	3	1.69	1	12.00
Age of patients	37	51.3	52.5	7.61	20	65.00

Table 4: Medication adherence vs. Socio-Economic factors.

	Med	Medication adherence level categories							
Characteristic	Non-adherent			Adhe	rent	P≤0.05			
	N	Mean	Median	SD	N	Mean	Median	SD	
Having children	85	3.53	3	1.88	147	3.37	3	1.59	p=0.485a
Monthly income	82	6464.63	2950	9621.98	137	4302.92	2800	5377.18	p=0.717 ^b
Monthly fare	84	174.64	100	196.96	146	216.23	120	303.78	p=0.454 ^b
Monthly spending in hospital fees	74	677.97	500	764.93	110	248.18	100	397.58	p=0.000 ^b

Independent student's t-test, ^b Independent samples Mann Whitney U test.

Table 5: Patient related factors.

Factor		N	%	
Patient habits and attitudes				
	No	35	14.8	
Monitors BP at home	Yes	202	85.2	
	Total	237	100.0	
	No	232	97.9	
Smokes	Yes	5	2.1	
	Total	237	100.0	
	No	213	89.9	
Drinks alcohol	Yes	24	10.1	
	Total	237	100.0	
	No	25	10.6	
Honors clinic appointments	Yes	210	89.4	
	Total	235	100.0	
Thinks missing single dose affects BP	Yes	201	85.5	
	No	17	7.2	
	Don't Know	17	7.2	
	Total	235	100.0	
	No	36	15.2	
Missing single dose affects BP	Yes	201	84.8	
8 8	Total	237	100.0	
Comorbidities				
	No	80	33.9	
Has other chronic disease	Yes	156	66.1	
	Total	236	100.0	
	No	25	16.1	
Diabetes	Yes	130	83.9	
	Total	155	100.0	
	No	153	98.7	
Kidney Disease	Yes	2	1.3	
·	Total	155	100.0	
	No	154	99.4	
Asthma	Yes	1	0.6	
	Total	155	100.0	

Continued.

Factor		N	%	
	No	149	96.1	
Arthritis	Yes	6	3.9	
	Total	155	100.0	
Cancer	No	155	100.0	
	Yes	0	0.0	
	Total	155	100.0	
	No	153	98.7	
Mental problems	Yes	2	1.3	
•	Total	155	100.0	
	No	126	81.3	
Other	Yes	29	18.7	
	Total	155	100.0	

Table 6: Patient related factors associated with medication adherence.

Dations's muselines		Non-adherent	Adherent	Significant at
Patient's practices		N	N	p≤0.05
	No	21	13	χ2=10.853, df=1,
Monitors BP at home	Yes	65	136	p=0.001
	Total	86	149	p=0.001
	Yes	66	133	
Thinks missing single doseaffects	No	13	4	χ2=13.091, df=2,
BP	Don't Know	5	12	p=0.001
	Total	84	149	
	No	85	145	Fisher's exact
Smokes	Yes	1	4	p=0.656
	Total	86	149	p=0.030
	No	76	135	~2-0.206 df-1
Drinks alcohol	Yes	10	14	χ2=0.296, df=1, p=0.586
	Total	86	149	p=0.380
	No	11	14	2_0 (05 45_1
Honors clinic appointments	Yes	75	133	χ2=0.605, df=1, p=0.437
	Total	86	147	p=0.43 /
Presence of other comorbidities				
	No	24	56	w2-2 102 df-1
Has other chronic disease	Yes	61	93	χ2=2.102, df=1, p=0.147
	Total	85	149	p=0.147
	No	15	10	2-5.051 15-1
Diabetes	Yes	46	82	$\chi^{2=5.051, df=1}$, p=0.025
	Total	61	92	p=0.023
	No	61	90	Fisher's exact
Kidney Disease	Yes	0	2	p=0.517
	Total	61	92	p=0.317
	No	61	91	Fisher's exact
Asthma	Yes	0	1	p=1.000
	Total	61	92	h -1:000
	No	60	87	Fisher's exact
Arthritis	Yes	1	5	p= 0.403
	Total	61	92	p=0.403
	No	59	92	Fi-124
Mental problems	Yes	2	0	Fisher's exact p=0.157
	Total	61	92	p=0.13/

Table 7: Patient health system factors: availability of services.

Health system factors		N	%
	No	4	1.7
Receives HTN care at hospital whenneeded	Yes	232	98.3
	Total	236	100.0
Even missed your ennointment due touneveilebility of	No	212	89.5
Ever missed your appointment due tounavailability of Doc/HCP	Yes	25	10.5
DOC/ITC1	Total	237	100.0
Drugs readily available in hosp pharmacy	No	58	24.5
	Yes	179	75.5
	Total	237	100.0
	No	3	1.3
Medication taking instructions given	Yes	234	98.7
	Total	237	100.0
	Yes	210	89.7
Descives health educ meterials on HTN athernital	No	21	9.0
Receives health educ materials on HTN athospital	Don't Know	3	1.3
	Total	234	100.0

Table 8: Association between health system related factors and adherence.

Health systems related	Health systems related		nt Adhere N	nt	P≤0.05	
Receives HTN care at	No	4	0		Fisher's exact	
hospital whenneeded	Yes	82	148		p=0.017	
Ever missed care due	No	68	143		2 16 001	10 1
to unavailability of	Yes	18	6		χ2=16.991, ₽=0.000	df=1,
DR/HCP	Total	86	149		1-0.000	
Drugs readily	No	46	12		$\chi 2 = 60.552,$	df=1,
available in Hosp	Yes	40	137		χ2=00.332, P=0.000	u1−1,
pharmacy	Total	86	149		1 0.000	
Medication taking	No	3	0		Fisher's exact	
instructions given	Yes	83	149		P=0.048	
mstructions given	Total	86	149		1 0.040	
Receives education	Yes	65	143		$\chi 2 = 21.389$,	df=1,
materials on HTN at	No/Don't k	now 19	5		$\chi_2 = 21.369$, $P=0.000$	ui-1,
hospital	Total	84	148		1 0.000	
Characteristic	Medication	adherence level categor			<u> </u>	
Characteristic	Non-adhei	rent	Adherent			
Waiting time for lab test (Minutes)	n=63	Mean rank=105.59	n=141	Mean rank=101.12	P=0.604 ^a	
Waiting time at pharmacy (Minutes)	n=80	Mean rank=138.68	n=144	Mean rank=97.96	P=0.000 ^a	
Waiting time to see Dr/Clinician (Minutes)	n=85	Mean rank=132.58	n=148	Mean rank=108.05	P=0.001 ^a	

^a Independent-samples Mann Whitney U test.

DISCUSSION

In this study, slightly more than a third of hypertensive patients in Kirinyaga County, Kenya, did not adhere to prescribed antihypertensive therapy. This aligns with global estimates that adherence in low and middle-income countries (LMICs) remains considerably lower than the 50% adherence rate observed in high-income

countries.^{5,13} Locally, the adherence levels observed are consistent with findings from Kenyatta National Hospital, where adherence was reported at 31.8%.⁷ Sociodemographic characteristics such as marital status and healthcare costs significantly influenced adherence. Married patients were more likely to adhere compared to unmarried individuals, suggesting that family and social support may positively reinforce treatment behavior.

Similar associations between social support and adherence have been reported elsewhere. 10 Conversely, higher monthly hospital fees were inversely related to adherence, consistent with evidence from Sub-Saharan Africa indicating that financial barriers remain critical determinants of hypertension management.8 National survey data further reveal important gender differences. Among women aged 15-49 who had ever been told they had hypertension, only 32% were on medication.¹⁴ For men in the same age group, prevalence of ever being diagnosed was much lower at 3%, yet treatment rates among those diagnosed were comparable at 31.7%. These findings suggest that women are more likely to be screened and diagnosed, while men may remain undiagnosed despite similar challenges with adherence once treatment is initiated.

Patient-related factors also played a significant role. Twothirds of patients reported comorbidities, with diabetes mellitus being the most common. Interestingly, patients with diabetes were more likely to be adherent, possibly reflecting higher health literacy and more frequent engagement with healthcare systems, as observed in prior studies.³ Moreover, patients who monitored their blood pressure at home and believed that missing doses could worsen hypertension demonstrated higher adherence. This underscores the importance of health literacy and self-management in promoting long-term adherence.⁶

Health system factors further shaped adherence behavior. Although most respondents reported that medicines, providers and educational materials were available, longer wait times, especially at the doctor's consultation, emerged as a barrier. Logistic regression confirmed that patients who reported shorter pharmacy wait times and no history of side effects were significantly more likely to be adherent. These findings resonate with studies showing that systemic inefficiencies, including delays and poor patient-provider interactions, undermine adherence in LMICs.^{2,8}

This study had several limitations. Being a cross-sectional design, it could not establish causal relationships between identified factors and adherence. The reliance on self-reported measures, including the MMAS-8, may have introduced recall and social desirability bias, potentially overestimating adherence. Additionally, the study was conducted in a single secondary referral hospital, which limits the generalizability of the findings to other settings in Kirinyaga County or Kenya at large.

CONCLUSION

In conclusion, medication adherence among hypertensive patients was influenced by socio-demographic, patient-related and health system factors. Married patients and those with lower hospital expenses were more likely to adhere to treatment. Patient awareness, self-monitoring of blood pressure and the presence of comorbid diabetes significantly promoted adherence. Lastly, resource

availability and timely service delivery were positively associated with adherence, while long wait times discouraged it.

Funding: No funding sources Conflict of interest: None declared

Ethical approval: The study was approved by the

Institutional Ethics Committee

REFERENCES

- 1. Ahmad N, Hassan Y, Tangiisuran B, Meng OL, Aziz NA, Ahmad FU, et al. Guidelines adherence and hypertension control at a tertiary hospital in Malaysia. J Eval Clin Prac. 2013;19(5):798-804.
- Colecraft EK, Asante M, Christian AK, Adu-Afarwuah S. Sociodemographic Characteristics, Dietary Practices, and Nutritional Status of Adults with Hypertension in a Semi-Rural Community in the Eastern Region of Ghana. International J Hypert. 2018;2(1):2815193.
- 3. Atinga RA, Yarney L, Gavu NM. Factors influencing long-term medication non-adherence among diabetes and hypertensive patients in Ghana: a qualitative investigation. PloS one. 2018;13(3):193995.
- Ogeng'o JA, Gatonga P, Olabu BO, Ongera D. Pattern of hypertensive kidney disease in a black Kenyan population. Cardiology. 2012;120(3):125-9.
- 5. Kuria NE, Reid A, Owiti P, Tweya H, Kibet CK, Mbau L, Manzi M, Murunga V, Namusonge T, Kibachio J. Compliance with follow-up and adherence to medication in hypertensive patients in an urban informal settlement in Kenya: comparison of three models of care. Tropical Med Int Heal. 2018;23(7):785-94.
- 6. Ghembaza MA, Senoussaoui Y, Kendouci Tani M, Meguenni K. Impact of patient knowledge of hypertension complications on adherence to antihypertensive therapy. Current Hyperten Rev. 2014;10(1):41-8.
- Achieng L. Adequency of blood pressure control, level of adherence and reasons for non adherence to antihypertensive therapy at Kenyatta National Hospital (Doctoral dissertation, University of Nairobi). 2008.
- 8. Antignac M, Diop IB, Macquart de Terline D, Kramoh KE, Balde DM, Dzudie A. Socioeconomic status and hypertension control in sub-Saharan Africa: the Multination EIGHT study (Evaluation of Hypertension in Sub-Saharan Africa). Hypertension. 2018;71(4):577-84.
- 9. Caceres JD, Mojadidi MK, Eshtehardi P. B108 Diagnostic and prognostic assessment of pulmonary vascular disease: mortality in patients with pulmonary hypertension and high body mass index. American J Resp Crit Care Medicine. 2014;189:1.
- 10. Uchmanowicz B, Chudiak A, Uchmanowicz I, Rosińczuk J, Froelicher ES. Factors influencing adherence to treatment in older adults with

- hypertension. Clinical interventions in aging. 2018;3:2425-41.
- 11. Weru J, Muchangi D, Njoroge D. Management Support and Strategies Integration in County Governments in Kenya: A Case of County Government of Kirinyaga. 2020.
- 12. Morisky DE. Predictive validity of a medication adherence measure for hypertension control. J Clin Hypert. 2008;10:348-54.
- Maheshwari A, Gupta R, Verma N, Narasingan SN, Singh RB, Saboo B, Kumar CV, Gupta A, Srivastava MK, Gupta A, Srivastava S. Position statement on hypertension by Indian Society of Hypertension, 2023. J Human Hypert. 2024;38(11):736-44.
- 14. Mukuria AG, Martin SL, Egondi T, Bingham A, Thuita FM. Role of social support in improving infant feeding practices in Western Kenya: a quasi-experimental study. Global Health: Science and Practice. 2016;4(1):55-72.

Cite this article as: Muchiga B, Lakati A, Ndege S. Factors associated with adherence to antihypertensive medication among patients attending a secondary referral hospital, in Kirinyaga county, Kenya. Int J Community Med Public Health 2025;12:4326-34.