

Review Article

DOI: <https://dx.doi.org/10.18203/2394-6040.ijcmph20250219>

Exploring the link between genetic disorders and early-onset periodontal disease

**Ola Jamal Balkhair^{1*}, Rasha Ahmed Badahdah², Almaram Abdullah Alajmi³,
Khulud Mukhlid Almutairi³, Atheer Mutlak Alqahtani³, Hayfa Hmoud Alkhaldi³,
Nouf Safar Almotari³, Haifa Mohammed Alsharif², Sarah Hamad Almutairi³**

¹Department of Dental Services, King Abdul-Aziz Medical City, Jeddah, Saudi Arabia

²Specialized Dental Center, National Guard Health Affairs (NGHA), Jeddah, Saudi Arabia

³Dental Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia

Received: 08 January 2025

Accepted: 27 January 2025

***Correspondence:**

Dr. Ola Jamal Balkhair,

E-mail: olajb88@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Periodontal disease is a complex, multifactorial condition characterized by chronic inflammation and progressive destruction of the tooth-supporting structures. Among its various forms, early-onset periodontitis is particularly aggressive and often associated with genetic predispositions. Genetic and epigenetic factors play pivotal roles in shaping host susceptibility to this disease by influencing immune responses, inflammatory regulation, and tissue homeostasis. Single-nucleotide polymorphisms (SNPs) in genes encoding cytokines, such as interleukin-1 β and tumor necrosis factor-alpha, are linked to heightened inflammatory responses, amplifying tissue damage and accelerating disease progression. Additionally, polymorphisms in genes like TLR2 and TLR4 impair microbial recognition, promoting chronic inflammation and dysbiosis. Epigenetic modifications, including DNA methylation and histone acetylation, further modulate gene expression, contributing to the dynamic interplay between genetic predispositions and environmental factors like smoking or poor oral hygiene. Emerging research has also highlighted genetic markers such as human leukocyte antigen (HLA) alleles and matrix metalloproteinase (MMP) variants as predictors of disease severity and therapeutic outcomes. These insights have driven the development of targeted therapies, including inhibitors of pro-inflammatory mediators, MMP inhibitors, and potential miRNA-based interventions. High-throughput technologies, such as genome-wide association studies (GWAS), have expanded the understanding of genetic pathways involved in periodontal disease. These advances enable earlier disease detection and personalized treatment strategies, offering the potential to mitigate progression and reduce the burden of severe periodontitis. The integration of genetic and epigenetic research into clinical practice marks a significant step toward precision medicine, providing a framework for tailored prevention and therapeutic interventions aimed at improving patient outcomes. Future research must continue to explore these genetic mechanisms to uncover novel biomarkers and refine targeted treatment approaches for periodontal disease.

Keywords: Genetic predisposition, Periodontal disease, Inflammation, MicroRNA therapy, Epigenetics

INTRODUCTION

Periodontal disease is a multifactorial condition that involves the progressive destruction of the tissues supporting the teeth. Among its various forms, early-onset

periodontal disease (EOPD) is particularly aggressive and occurs in younger individuals, often linked to a strong genetic predisposition. This chronic inflammatory condition leads to premature tooth loss, adversely affecting oral health and quality of life. Understanding the interplay between genetic disorders and EOPD is crucial

for unraveling its etiology and advancing diagnostic and therapeutic approaches.

Genetic factors play a significant role in the pathogenesis of EOPD, contributing to susceptibility and progression. Specific genetic mutations can impair host immune responses and inflammatory pathways, rendering individuals more vulnerable to periodontal destruction. For instance, genetic disorders such as Ehlers-Danlos syndrome and Papillon-Lefèvre syndrome are frequently associated with severe periodontitis at an early age. These conditions are linked to mutations in genes that influence collagen synthesis and proteolytic activity, thereby compromising periodontal tissue integrity and defense mechanisms.^{1,2}

Immune dysregulation driven by genetic abnormalities is another critical aspect of EOPD pathogenesis. Mutations in genes regulating cytokine production and immune signaling pathways exacerbate inflammatory responses to periodontal pathogens, leading to disproportionate tissue damage. For example, alterations in the cathepsin C gene (CTSC) have been implicated in aggressive forms of periodontitis, as they impair neutrophil function and pathogen clearance.³ Such insights highlight the intricate relationship between genetic predisposition and host-microbial interactions in periodontal disease.

Furthermore, recent advances in molecular and genomic technologies have identified potential biomarkers for early detection and risk stratification of EOPD. These include SNPs in genes encoding pro-inflammatory cytokines and enzymes involved in connective tissue remodeling. Identifying these genetic markers holds promise for developing personalized treatment strategies tailored to an individual's genetic profile. Moreover, gene therapy and other innovative approaches targeting specific genetic pathways are emerging as potential avenues for managing genetically driven forms of periodontitis.⁴

Despite significant progress in understanding the genetic basis of EOPD, numerous challenges remain. The interplay between genetic, environmental, and microbial factors requires further investigation to elucidate the underlying mechanisms comprehensively. Additionally, translating genetic findings into clinical practice necessitates robust validation studies and the development of cost-effective diagnostic tools. By addressing these gaps, the field can move closer to achieving precision medicine in periodontal care. This review aims to explore the intricate connections between genetic disorders and EOPD, highlighting the underlying mechanisms, potential biomarkers, and emerging therapeutic strategies.

Genetic factors are increasingly recognized as critical determinants in the susceptibility to EOPD. Research highlights the significant role of heritable traits in modulating host responses to periodontal pathogens. A

study by Michalowicz demonstrated the influence of genetic predispositions on inflammatory processes and connective tissue integrity, emphasizing the higher risk for EOPD in individuals with a family history of periodontal conditions.⁵ This underscores the need for targeted genetic screening to identify at-risk populations early. Furthermore, advancements in molecular genetics have identified specific genetic mutations associated with severe periodontal phenotypes. For instance, Boughman et al reviewed the molecular basis of EOPD, highlighting mutations in genes such as CTSC, which disrupt neutrophil function and impair immune defense mechanisms against bacterial invasion.⁶ These findings underscore the interplay between genetic defects and microbial dysbiosis in the pathogenesis of EOPD. Emerging evidence suggests the potential of integrating genetic biomarkers into periodontal risk assessment frameworks, paving the way for precision medicine approaches. However, translating these insights into clinical practice remains a challenge due to the complexity of genetic-environmental interactions and the multifactorial nature of periodontal diseases.

GENETIC FACTORS IN PERIODONTAL DISEASE SUSCEPTIBILITY

Genetic factors significantly influence an individual's susceptibility to periodontal diseases, including chronic and early-onset periodontitis. These diseases are the result of complex interactions between microbial, environmental, and host genetic factors. Research has increasingly focused on identifying genetic variations and pathways that predispose individuals to periodontal disease, shedding light on key molecular mechanisms that drive inflammation, immune responses, and tissue destruction. Polymorphisms in genes regulating inflammatory cytokines are critical contributors to periodontal disease. Cytokines like interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF- α), and interleukin-6 (IL-6) are central to the host immune response in periodontitis. A study by Moghadam et al identified specific SNPs in cytokine genes that enhance the inflammatory cascade in periodontal tissues.⁷ These genetic variations amplify the release of pro-inflammatory mediators in response to bacterial biofilms, leading to excessive tissue destruction and bone resorption. Individuals carrying these polymorphisms are more likely to experience severe periodontal conditions, even under similar environmental exposures.

In addition to cytokine polymorphisms, genetic variations affecting innate immune responses play a pivotal role. Chrysanthakopoulos and Vryzaki explored how genetic alterations in toll-like receptors (TLRs) affect the host's ability to recognize and respond to periodontal pathogens.⁸ TLRs are pattern recognition receptors that detect microbial components, triggering downstream inflammatory responses. Mutations in TLR2 and TLR4 genes have been linked to diminished pathogen recognition and impaired activation of immune signaling

pathways. This weakens the host's defense against periodontal infections, contributing to microbial dysbiosis and disease progression. Antimicrobial peptides, such as beta-defensins, also play a vital role in periodontal immunity. These peptides act as natural antibiotics, protecting the oral epithelium from pathogenic invasion. Falatah et al demonstrated that genetic polymorphisms in beta-defensin genes compromise their antimicrobial activity.⁹ This deficiency creates an environment favorable to bacterial overgrowth, allowing periodontal pathogens like *Porphyromonas gingivalis* and *Aggregatibacter actinomycetemcomitans* to proliferate. The resultant microbial dysbiosis exacerbates inflammation and accelerates tissue damage, highlighting the importance of genetic regulation in maintaining oral microbial balance.

The structural integrity of periodontal tissues is equally influenced by genetic factors. Mutations in genes encoding collagen, a major component of the periodontal ligament, can weaken the connective tissue matrix. Hudson et al examined the impact of mutations and post-translational modifications in collagen type I on periodontal stability.¹⁰ These mutations were shown to impair the structural integrity of collagen fibrils, reducing their tensile strength and resilience under mechanical stress. In the periodontal ligament, this compromised collagen network weakens the tissue's ability to withstand bacterial invasion and inflammatory damage. The findings highlighted that structural vulnerabilities in the extracellular matrix contribute to rapid disease progression and increased susceptibility to tooth loss in affected individuals. These insights underscore the importance of collagen integrity in maintaining periodontal health and stability.

Emerging research has also revealed the role of epigenetic modifications in modulating genetic susceptibility to periodontal disease. Giraldo-Osorno et al highlighted how DNA methylation patterns in key immune-related genes are altered by environmental exposures such as smoking and poor oral hygiene.¹¹ These epigenetic changes can exacerbate genetic predispositions, leading to heightened inflammatory responses and greater periodontal tissue destruction. Furthermore, histone modifications and microRNAs have been implicated in regulating gene expression during periodontal disease, offering new insights into the dynamic nature of genetic-environmental interactions. Advances in genomics have enabled the identification of novel genetic markers associated with periodontal disease susceptibility. Genome-wide association studies (GWAS) have uncovered SNPs in genes related to immune regulation, connective tissue integrity, and microbial interactions. Park et al discussed the potential of GWAS in uncovering genetic variations previously overlooked in traditional candidate-gene studies.¹² These findings not only enhance our understanding of the genetic basis of periodontitis but also pave the way for personalized approaches to disease prevention and treatment. The integration of genetic and

genomic data into periodontal care holds promise for advancing precision medicine. By identifying individuals with genetic predispositions, clinicians can implement early interventions and tailored therapeutic strategies. For instance, genetic testing could help stratify patients based on their risk profiles, enabling more targeted use of anti-inflammatory agents or regenerative therapies. Additionally, understanding the genetic mechanisms underlying periodontal disease may lead to the development of novel pharmacological agents aimed at modulating specific genetic pathways.

ROLE OF MUTATIONS IN IMMUNE AND INFLAMMATORY DYSREGULATION

Mutations in genes that regulate immune responses and inflammatory pathways are central to the pathogenesis of periodontal diseases. These genetic alterations can lead to both an exaggerated inflammatory response and impaired resolution of inflammation, creating a chronic inflammatory environment that contributes to tissue destruction and bone loss. Cytokines such as interleukin-1 β (IL-1 β) and TNF- α are pivotal in the immune response against periodontal pathogens. Farhad et al highlighted that polymorphisms in the IL-1 gene cluster, particularly in IL-1 β , result in increased cytokine production in response to bacterial invasion.¹³ This excessive cytokine release exacerbates inflammation in periodontal tissues, causing collateral damage to the extracellular matrix and alveolar bone. Individuals carrying these polymorphisms are significantly more likely to develop severe forms of periodontal disease, even when exposed to similar microbial challenges as those without such mutations.

TLRs, which are part of the innate immune system, recognize microbial-associated molecular patterns and activate downstream inflammatory signaling. Choukroun et al described how mutations in TLR2 and TLR4 impair microbial recognition, leading to delayed or dysregulated immune responses.¹⁴ Such dysfunction allows periodontal pathogens, including *Porphyromonas gingivalis* and *Treponema denticola*, to thrive within subgingival biofilms. This microbial dysbiosis not only triggers an inflammatory cascade but also sustains it over time, resulting in chronic tissue damage. Mutations affecting the nuclear factor-kappa B (NF- κ B) signaling pathway further contribute to immune dysregulation. NF- κ B is a key transcription factor that regulates the expression of pro-inflammatory cytokines and enzymes such as MMPs. Dysregulated activation of NF- κ B, as seen in individuals with specific genetic variations, leads to excessive production of MMPs. These enzymes degrade collagen and other extracellular matrix components, which are essential for maintaining the structural integrity of the periodontal ligament.¹⁵ Overactivation of NF- κ B also amplifies the release of TNF- α and IL-6, perpetuating the inflammatory process.

TNF- α gene polymorphisms are another significant factor in immune dysregulation during periodontal disease.

Variants such as TNF- α -308G/A have been associated with increased production of TNF- α in gingival tissues. This cytokine not only mediates the recruitment of immune cells to sites of infection but also enhances osteoclast activity, leading to accelerated alveolar bone resorption.¹⁶ The persistent overexpression of TNF- α in susceptible individuals creates a chronic inflammatory state that is difficult to resolve, even with periodontal therapy. Apoptosis, or programmed cell death, plays a crucial role in resolving inflammation by clearing damaged cells and restoring tissue homeostasis. Genetic mutations in apoptosis-regulating genes, such as caspases and B-cell lymphoma proteins, disrupt this process in periodontal disease. Disrupted apoptosis allows prolonged survival of inflammatory cells, such as neutrophils and macrophages, within periodontal lesions. This sustained immune cell presence leads to the continuous release of pro-inflammatory mediators and reactive oxygen species, further damaging periodontal tissues.¹⁷

Epigenetic modifications, which can be influenced by genetic mutations, also play a role in inflammatory dysregulation. Giraldo-Osorno et al highlighted that aberrant DNA methylation patterns in immune-regulating genes can silence anti-inflammatory pathways while promoting pro-inflammatory gene expression.¹⁸ These epigenetic alterations interact with genetic predispositions to amplify immune dysregulation, making periodontal disease management more challenging in affected individuals. Recent advances in molecular biology have provided insights into how these genetic and epigenetic alterations interact with environmental factors to modulate immune responses. For example, smoking, which is a major risk factor for periodontal disease, exacerbates the effects of genetic mutations by increasing oxidative stress and further impairing immune regulation. The combined effect of genetic predispositions, environmental exposures, and microbial interactions highlights the multifactorial nature of immune dysregulation in periodontal disease.

GENETIC MARKERS FOR EARLY DETECTION AND TARGETED THERAPIES

Advancements in genetic research have significantly enhanced the understanding of periodontal disease and paved the way for the identification of genetic markers. These markers have demonstrated potential in early disease detection and the development of targeted therapeutic approaches, offering new opportunities to improve patient outcomes. SNPs are among the most extensively studied genetic markers in periodontal disease. Research by Qiu et al found that polymorphisms in genes associated with immune regulation, such as interleukin-6 (IL-6) and interleukin-10 (IL-10), influence the inflammatory response in periodontal tissues.¹⁹ Variants in these cytokine genes can either amplify or suppress inflammation, affecting the severity and progression of the disease. Identifying these

polymorphisms through genetic screening can help stratify patients based on their risk profiles, enabling earlier interventions for those at higher risk.

Epigenetic changes, such as DNA methylation and histone modification, have also emerged as critical contributors to periodontal disease pathogenesis. Saas et al highlighted that alterations in the methylation patterns of genes involved in immune regulation can serve as biomarkers for early detection.²⁰ These epigenetic modifications are influenced by environmental factors, such as smoking and poor oral hygiene, and interact with genetic predispositions to exacerbate the inflammatory response. The reversible nature of epigenetic changes presents an opportunity for developing therapeutic interventions aimed at restoring normal gene expression. The HLA gene complex has been implicated in host-pathogen interactions in periodontal disease. Studies have shown that specific HLA alleles, such as HLA-DR4, are associated with an increased risk of severe periodontal disease. Liu and Hu highlighted that specific HLA alleles, such as HLA-DRB1*1402, are associated with heightened immune responses to periodontal pathogens, leading to significant tissue destruction.²¹ Understanding the role of HLA markers provides valuable insights into individual susceptibility, enabling more personalized and targeted treatment approaches for managing periodontal disease.

MMPs play a key role in the degradation of extracellular matrix components during periodontal tissue destruction. Variants in MMP genes, particularly MMP-1 and MMP-9, have been associated with an increased risk of periodontal disease. Research has demonstrated that certain SNPs in these genes result in elevated MMP activity, contributing to the breakdown of connective tissues and alveolar bone. Targeting these genetic markers with inhibitors of MMP activity offers a promising therapeutic avenue for mitigating tissue destruction in susceptible individuals.²² Advances in GWAS have identified novel genetic loci associated with periodontal disease. A recent study revealed that polymorphisms in the gene encoding the toll-like receptor 4 (TLR4) significantly impact the host's ability to recognize and respond to periodontal pathogens. Ding et al demonstrated that polymorphisms in the toll-like receptor 4 (TLR4) gene significantly impact the inflammatory response, influencing both the severity of inflammation and the extent of tissue destruction in periodontal disease.²³ Incorporating findings from GWAS and genetic studies into clinical practice has the potential to refine diagnostic precision and guide personalized therapeutic approaches.

MicroRNAs (miRNAs), which regulate gene expression post-transcriptionally, have also gained attention as potential biomarkers and therapeutic targets. Studies have identified specific miRNAs, such as miR-146a and miR-155, that are dysregulated in periodontal disease. These miRNAs modulate inflammatory pathways and immune responses, making them attractive candidates for

therapeutic intervention. Xu et al highlighted the therapeutic potential of targeting miRNAs to regulate inflammatory pathways and immune responses in periodontal tissues.²⁴ By modulating specific miRNA activity, such as through circRNA interactions, these strategies aim to restore immune homeostasis and mitigate tissue inflammation. The expanding evidence on genetic and epigenetic contributions to periodontal disease emphasizes the importance of integrating genetic testing into routine care. Early identification of individuals with genetic predispositions and monitoring epigenetic changes can facilitate timely interventions and the design of personalized therapies, ultimately reducing disease progression and minimizing tissue destruction.

CONCLUSION

Genetic and epigenetic markers hold immense potential for transforming the diagnosis and management of periodontal disease. By identifying individuals at genetic risk, clinicians can implement preventative strategies and targeted therapies, minimizing disease progression and tissue destruction. Advances in molecular and genomic technologies offer promising opportunities for precision medicine in periodontal care. Continued research will further refine these tools, paving the way for improved patient outcomes.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: Not required

REFERENCES

1. Pertoll J. Analysis of the collagen matrix in periodontal Ehlers-Danlos syndrom. 2024.
2. Chitsamankhun C, Siritongtaworn N, Fournier B, Kanokwan S, Thanakorn T, Lakshman S, et al. Cathepsin C in health and disease: from structural insights to therapeutic prospects. *J Translational Med.* 2024;22(1):777.
3. Sim NCW, Al-Maleki AR, Sulaiman E, Mohamad-Hassan NH, Safii SH. Clinical outcomes and supragingival microbiota analysis around dental implants and teeth in patients with a history of periodontitis: a preliminary study of 6 months follow-up. *Clinical Oral Investigations.* 2024;28(10):528.
4. Jeppipalli S, Gurusamy P, Luz Martins AR, Eduardo C, Sandhya RN, Tushar D, et al. Altered microRNA Expression Correlates with Reduced TLR2/4-Dependent Periodontal Inflammation and Bone Resorption Induced by Polymicrobial Infection. *bioRxiv.* 2025;2025.2001. 2010.632435.
5. Michalowicz BS. Genetic and heritable risk factors in periodontal disease. *J Periodontol.* 1994;65:479-88.
6. Boughman J, Astemborski J, Blitzer M. Early onset periodontal disease: a genetics perspective. *Crit Rev Oral Biol Med.* 1990;1(2):89-99.
7. Moghadam SA, Hoseinbor S, Bamedi M, Ranjbaran A. Association of ABO Blood Groups and Rh Factor with Periodontal Disease Prevalence in a Population from Saravan, Iran. *Zahedan J Res Med Sci.* 2025;27(1):e158043.
8. Chrysanthakopoulos N, Vryzaki E. The Possible Role of Chronic Periodontal Disease in Neurodegenerative Diseases and Glioblastoma Pathogenesis-An Essential Review. *SunText Rev Dental Sci.* 2024;5(2):183.
9. Falatah AM, Alturki SA, Aldahami AI, Alrashidi NA, Sinnah Y, Aldgeel RM, et al. Exploring the Influence of Genetic Single-Nucleotide Polymorphism (SNPs) on Endodontic Pathologies: A Comprehensive Review. *Cureus.* 2024;16(11):e74389.
10. Hudson DM, Garibov M, Dixon DR, Popowics T, Eyre DR. Distinct post-translational features of type I collagen are conserved in mouse and human periodontal ligament. *J Periodontal Res.* 2017;52(6):1042-9.
11. Larsson L, Giraldo-Osorno P, Garaicoa-Pazmino C, Giannobile W, Asa'ad F. DNA and RNA Methylation in Periodontal and Peri-implant Diseases. *J Dental Res.* 2024;00220345241291533.
12. Park J-Y, Lee JY, Kim Y, Kim B-K, Kim BK, Choi S-I. Biosafety characteristics and antibacterial activity of probiotic strains against *Streptococcus mutans*, *Aggregatibacter actinomycetemcomitans*, and *Porphyromonas gingivalis*. *Ann Microbiol.* 2025;75(1):2.
13. Farhad SZ, Karbalaeihasanesfahani A, Dadgar E, Nasiri K, Esfahaniani M, Nabi Afjadi M. The role of periodontitis in cancer development, with a focus on oral cancers. *Molecul Biol Rep.* 2024;51(1):814.
14. Choukroun E, Parnot M, Surmenian J, Reinhard G, Nicolas C, Nicolas D, et al. Bone Formation and Maintenance in Oral Surgery: The Decisive Role of the Immune System-A Narrative Review of Mechanisms and Solutions. *Bioengineering.* 2024;11(2):191.
15. Li M, Zhang Y, Zhang A, He C, Rui Z, Ran C, et al. Association between polymorphisms of anti-inflammatory gene alleles and periodontitis risk in a Chinese Han population. *Clin Oral Investigat.* 2023;27(11):6689-700.
16. Solhjoo S, Mahmoudzadeh SH, Heidari Z, Hashemi M, Rigi LM. Association between TNF- α (-308 G \rightarrow A) gene polymorphism and chronic periodontitis. 2014.
17. Loos BG, Van Dyke TE. The role of inflammation and genetics in periodontal disease. *Periodontology 2000.* 2020;83(1):26-39.
18. Barros SP, Fahimipour F, Tarran R, Steven K, Raquel MSC, Anne J, et al. Epigenetic reprogramming in periodontal disease: Dynamic crosstalk with potential impact in oncogenesis. *Periodontology 2000.* 2020;82(1):157-72.
19. Qiu C, Zhou W, Shen H, Jintao W, Ran T, Tao W, et al. Profiles of subgingival microbiomes and gingival crevicular metabolic signatures in patients

with amnestic mild cognitive impairment and Alzheimer's disease. *Alzheimer's Res Therapy.* 2024;16(1):41.

20. Saas P, Toussirot E, Bogunia-Kubik K. Recent advances in potential biomarkers for rheumatic diseases and in cell-based therapies in the management of inflammatory rheumatic diseases. *Front Immunol.* 2022;12:836119.

21. Liu S, Hu R. Evaluating and refining strategies for rheumatoid arthritis prevention in First Nations communities. *J Rheumatol.* 2024;51(12):1266-7.

22. Liu X, Li H. A systematic review and meta-analysis on multiple cytokine gene polymorphisms in the pathogenesis of periodontitis. *Front Immunol.* 2022;12:713198.

23. Ding Y-S, Zhao Y, Xiao Y-Y, Zhao G. Toll-like receptor 4 gene polymorphism is associated with chronic periodontitis. *Int J Clin Exper Med.* 2015;8(4):6186.

24. Xu M, Zhu F, Guo Y, Fan L, Songlin S, Ling Y, et al. Targeting circFOXO3 to Modulate Integrin β 6 Expression in Periodontitis: A Potential Therapeutic Approach. *J Clin Periodontol;* 2025.

Cite this article as: Balkhair OJ, Badahdah RA, Alajmi AA, Almutairi KM, Alqahtani AM, Alkhaldi HH, et al. Exploring the link between genetic disorders and early-onset periodontal disease. *Int J Community Med Public Health* 2025;12:1117-22.