

Review Article

DOI: <https://dx.doi.org/10.18203/2394-6040.ijcmph20250074>

Utilization and benefits of point-of-care testing in primary healthcare

**Mohammed A. Jumah^{1*}, Fisal F. Magliah¹, Salman A. Ageel², Jouri A. Almutairi³,
Wed A. Alsubhi⁴, Shorouq A. Alamer⁵, Maryam A. Alanazi⁶, Hejris J. Alanazi⁷,
Rayan F. Alshaqha⁸, Dania M. Almoghrabi⁹, Ali A. Alyusef¹⁰, Hajar I. Alkinani¹¹**

¹Department of Family Medicine, Al Thager Hospital - Prince Abdulmajeed Center, Jeddah, Saudi Arabia

²College of Medicine, Alfaisal University, Riyadh, Saudi Arabia

³College of Medicine, Princess Nourah Bint Abdul Rahman University, Riyadh, Saudi Arabia

⁴Department of Pediatric Emergency, East Jeddah Hospital, Jeddah, Saudi Arabia

⁵Department of Family Medicine, Alqabel Primary Health Care Centre, Abha, Saudi Arabia

⁶General Practice, Qassim Health Cluster, Buraydah, Saudi Arabia

⁷College of Medicine, Northern Borden University, Arar, Saudi Arabia

⁸Primary Health Care, Ministry of Health, Unaizah, Saudi Arabia

⁹College of Medicine, Princess Nourah Bint Abdul Rahman University, Riyadh, Saudi Arabia

¹⁰College of Medicine, King Abdulaziz University, Eastern Province, Saudi Arabia

¹¹ICU, South Qunfudhah Hospital, Mecca, Saudi Arabia

Received: 02 January 2025

Accepted: 22 January 2025

***Correspondence:**

Dr. Mohammed A. Jumah,

E-mail: Jom3ah@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Point-of-care testing (POCT) represents a transformative advancement in healthcare, enabling rapid and accurate diagnostics at or near the site of patient care. By reducing reliance on centralized laboratories, POCT expedites clinical decision-making and enhances healthcare delivery, particularly in underserved regions. Its application spans various medical fields, including infectious diseases, chronic disease management, and emergency care. Innovations such as molecular diagnostics, biosensors, and artificial intelligence (AI) integration have improved the precision, reliability, and accessibility of POCT devices, offering significant benefits for patient outcomes and healthcare efficiency. POCT has demonstrated its potential to reduce diagnostic delays, lower hospital admissions, and decrease the burden on overextended healthcare systems. Rapid diagnostics for conditions such as acute myocardial infarction, diabetes, and malaria have resulted in timely interventions, improving survival rates and reducing complications. In addition to clinical benefits, economic analyses highlight the cost-effectiveness of POCT, as it minimizes resource utilization and shortens patient treatment cycles. However, challenges persist in scaling POCT accessibility. Financial barriers, supply chain limitations, regulatory inconsistencies, and workforce training deficits impede its widespread adoption, particularly in low- and middle-income countries. Addressing these issues requires innovative funding models, global regulatory harmonization, and capacity-building initiatives to empower healthcare workers. Technological advancements continue to expand POCT's potential, integrating real-time diagnostics with digital health platforms and epidemiological surveillance systems. These developments promise not only to enhance healthcare delivery but also to improve public health responses to outbreaks and health crises. By bridging the gap between diagnostics and treatment, POCT offers a pathway to more equitable and efficient healthcare systems, transforming how and where care is delivered. Its integration into healthcare frameworks holds the potential to redefine patient care, fostering a future of accessible, high-quality healthcare for all.

Keywords: Point-of-care testing, Diagnostics, Healthcare efficiency, Accessibility, Public health

INTRODUCTION

Point-of-care testing (POCT) has emerged as a transformative element in primary healthcare by enabling rapid diagnostic results at or near the site of patient care. This innovation aims to decentralize laboratory testing, reduce turnaround times, and enhance accessibility, particularly in resource-limited settings. By circumventing the need for centralized laboratories, POCT facilitates timely clinical decision-making, thereby improving patient outcomes and alleviating the burden on healthcare systems.

The technological advancements in POCT devices have broadened their applicability, allowing for the detection of infectious diseases, chronic conditions, and metabolic disorders. For instance, devices for blood glucose monitoring and hemoglobin A1c testing are indispensable tools in managing diabetes, enhancing the precision of glycemic control in real time.¹ Similarly, portable devices for infectious disease detection, such as human immunodeficiency virus (HIV) and malaria, have been integrated successfully into primary care, especially in rural or underdeveloped areas, where conventional laboratory services are scarce.²

One of the core benefits of POCT is its ability to enhance efficiency and equity in healthcare delivery. Research has demonstrated that these tests can reduce diagnostic delays and minimize unnecessary hospital visits, particularly in underserved populations.³ Moreover, integrating POCT into community healthcare programs has empowered non-specialist health workers to deliver targeted interventions, addressing disparities in health outcomes among marginalized groups.⁴ Despite its many benefits, the adoption of POCT is not without challenges. The accuracy of certain tests remains variable, and the need for consistent quality control is paramount to avoid diagnostic errors. Moreover, concerns about the cost-effectiveness of POCT have emerged in some healthcare systems, as the upfront investment in equipment and training may be prohibitive, especially in low-income countries. However, these challenges underscore the importance of developing robust implementation strategies, including workforce training and regulatory frameworks to ensure the safe and effective use of POCT.

The global COVID-19 pandemic further highlighted the value of POCT, as rapid antigen tests became a cornerstone in identifying and isolating cases to curb the spread of the virus. This unprecedented deployment of POCT illustrated its potential for large-scale screening and surveillance in both urban and rural settings. As the healthcare landscape evolves, the role of POCT in enhancing pandemic preparedness and response cannot be overstated. This review aims to explore the utilization and benefits of point-of-care testing in primary healthcare, focusing on its integration, impact on patient outcomes, and strategies to overcome associated challenges.

REVIEW

POCT has become integral to primary healthcare, offering significant improvements in diagnostic efficiency and accessibility. By providing rapid test results, POCT enables timely clinical decisions, which is especially crucial in managing chronic diseases such as diabetes and hypertension. For instance, blood glucose and lipid panel POCT devices have streamlined disease monitoring, empowering patients and clinicians to optimize treatment plans effectively.⁵ This immediacy is particularly beneficial in remote or underserved regions, where access to centralized laboratories is often limited. However, the widespread adoption of POCT in primary healthcare faces notable challenges. Variability in test accuracy and quality remains a concern, emphasizing the importance of rigorous training for healthcare professionals and adherence to quality control standards.⁶ Furthermore, while POCT devices reduce diagnostic turnaround times, the high initial costs for devices and consumables may limit their implementation in low-resource settings. To address this, scalable deployment strategies, such as subsidized programs and integrated healthcare models, are needed to maximize the reach and benefits of POCT. Overall, the integration of POCT into primary healthcare has demonstrated transformative potential, improving diagnostic workflows and patient outcomes. Future efforts should focus on enhancing test reliability, affordability, and access to ensure equitable healthcare delivery worldwide.

Integration of point-of-care testing in primary healthcare workflows

The integration of POCT into primary healthcare workflows offers a blend of efficacy and safety benefits, supporting improved diagnostic precision and expedited clinical decision-making. One of the defining strengths of POCT lies in its ability to deliver rapid diagnostic results directly at the patient's point of care, bypassing traditional centralized laboratories. This capability has proven particularly impactful in rural or underserved regions where access to specialized testing facilities is limited, enhancing diagnostic accuracy and reducing the time to intervention.⁷

From a safety perspective, POCT has been instrumental in minimizing diagnostic delays for critical conditions. For example, troponin-based POCT for acute coronary syndromes enables timely stratification of patients, facilitating rapid therapeutic interventions and potentially saving lives.⁸ Furthermore, innovations in POCT devices for infectious diseases, such as rapid polymerase chain reaction (PCR) tests, have provided healthcare professionals with accurate results that inform appropriate treatment decisions while reducing unnecessary antibiotic use, thus addressing concerns of antimicrobial resistance.⁹ Despite its benefits, integrating POCT into routine clinical workflows is not without challenges. Ensuring the consistent accuracy of results across various devices and

operators has been a persistent concern. Variability in device performance, coupled with operator dependency, necessitates comprehensive training programs and regular quality control protocols. This is particularly significant in settings with limited resources, where infrastructure to support device calibration and maintenance may be insufficient.¹⁰

The economic dimension of POCT implementation further underscores its dual impact on efficacy and safety. While the upfront costs of POCT devices may appear prohibitive, studies highlight significant downstream savings by reducing hospital admissions, shortening clinic visits, and mitigating complications arising from delayed diagnoses. For instance, a cost-effectiveness analysis of POCT for managing respiratory tract infections demonstrated substantial healthcare savings while maintaining diagnostic accuracy and safety standards.¹¹ Another critical consideration in the efficacy and safety profiles of POCT is the reliability of diagnostic algorithms. The integration of clinical decision support systems with POCT devices has emerged as a game changer, augmenting healthcare providers' diagnostic accuracy and improving adherence to evidence-based guidelines. This technological synergy has been particularly evident in managing chronic conditions, where real-time data from POCT devices inform personalized treatment adjustments, thereby enhancing patient outcomes.¹²

Emerging innovations in POCT are likely to further enhance its efficacy and safety. Advances in biosensor technologies and miniaturized diagnostic platforms are expanding the scope of POCT applications, enabling multi-parameter testing on a single device. These developments promise to improve the comprehensiveness of diagnostic evaluations at the primary care level, bridging gaps in current healthcare delivery models.

Impact on patient outcomes and healthcare efficiency

The integration of POCT into healthcare systems has profoundly influenced patient outcomes and operational workflows, offering numerous advantages in diagnostic precision, timely interventions, and overall system efficiency. These benefits are particularly evident in time-critical scenarios, where rapid diagnostic results can make the difference between life and death. For instance, POCT for cardiac biomarkers such as troponin enables early detection of acute myocardial infarction, significantly improving survival rates and reducing complications. This immediacy not only benefits patients but also alleviates the burden on emergency departments by optimizing patient flow and resource allocation.¹³

Diagnostic specificity and accuracy are central to the value of POCT in primary and specialized care. Molecular diagnostic tools used at the point of care, particularly in respiratory infections, have demonstrated the ability to differentiate between viral and bacterial pathogens effectively. This distinction is crucial in ensuring

appropriate treatment pathways. For example, rapid PCR-based POCT devices in pediatric settings reduce unnecessary antibiotic prescriptions by confirming viral infections, directly addressing the global issue of antimicrobial resistance.¹⁴ Improved diagnostic accuracy minimizes treatment delays, reducing the likelihood of complications and enhancing patient recovery rates.

Operational efficiency is another area where POCT has delivered measurable impact. Traditional laboratory-based testing often involves lengthy processes, including sample collection, transport, and result reporting. POCT eliminates these delays, providing real-time results that facilitate immediate clinical decision-making. Studies on diabetic care management demonstrate that HbA1c testing at the point of care reduces the need for follow-up visits, as therapeutic adjustments can be made during the same appointment. This not only streamlines care delivery but also improves patient satisfaction by reducing the inconvenience of multiple visits.¹⁵

Economic analyses further highlight the value of POCT in healthcare systems. Although the initial investment in devices and consumables may seem significant, the long-term cost savings are substantial. In infectious disease management, POCT has been shown to reduce hospitalization rates and lengths of stay, translating into considerable savings for healthcare providers. For example, the use of POCT for respiratory infections in children has lowered admission rates while maintaining high diagnostic accuracy, proving its cost-effectiveness even in resource-limited settings.¹⁶ Such economic benefits extend to patients as well, as timely interventions minimize out-of-pocket expenses associated with prolonged or complex treatments.

Accessibility is a critical advantage of POCT, particularly in rural and underserved areas where centralized laboratory services are unavailable or impractical. Portable and easy-to-operate devices have proven invaluable in these settings, enabling healthcare providers to deliver timely and accurate diagnoses. This decentralization reduces the logistical challenges and costs associated with transporting patients or samples to distant laboratories. By empowering local healthcare systems, POCT fosters equity in access to quality care, ensuring that diagnostic capabilities are not confined to urban centers.¹⁷

The role of technological advancements in enhancing the effectiveness of POCT cannot be overstated. The integration of artificial intelligence (AI) and machine learning has improved the interpretive accuracy of POCT results, making them more reliable for clinical decision-making. AI-driven decision support systems, designed to work alongside POCT devices, help clinicians contextualize test results within patient-specific parameters, leading to better-tailored treatments. For example, AI-enhanced POCT in chronic disease management enables continuous monitoring and early

detection of exacerbations, thereby reducing hospitalizations and improving patient outcomes.¹⁸

Looking ahead, the scalability of POCT solutions offers significant potential for transforming global healthcare. Innovations in biosensor technology and miniaturized diagnostic platforms are expanding the scope of POCT applications, enabling comprehensive multi-analyte testing at the point of care. These advancements promise not only to enhance diagnostic precision but also to make testing more affordable and accessible, particularly in low-income regions. As healthcare systems continue to evolve, the role of POCT in bridging diagnostic gaps and optimizing clinical workflows will only grow more prominent.

Challenges and opportunities in expanding point-of-care testing accessibility

Expanding the accessibility of POCT presents both significant challenges and unique opportunities, especially in regions with limited healthcare infrastructure. One of the foremost hurdles is the financial investment required for acquiring, maintaining, and scaling POCT technologies. For many healthcare providers in low- and middle-income countries (LMICs), the upfront costs remain a barrier despite the long-term savings these technologies offer. Innovative funding strategies and partnerships with international organizations have been proposed as solutions to bridge these financial gaps, allowing greater adoption and sustainability of POCT.¹⁹

Logistical issues surrounding the supply chain and distribution of POCT devices also pose critical challenges. The dependence on robust supply networks for consumables, calibration tools, and replacements can hinder the seamless operation of POCT systems. These constraints are particularly pronounced in rural and remote areas, where transportation networks are less developed. Addressing this requires enhanced logistics planning and decentralized manufacturing processes that bring production closer to the point of use. Moreover, initiatives focusing on community engagement and local health worker training can ensure the smooth implementation and operation of POCT programs.²⁰

Regulatory frameworks surrounding POCT deployment vary significantly between regions, often complicating their introduction into healthcare systems. The lack of harmonized global standards for device approval and quality assurance results in inconsistencies in their reliability and clinical utility. Establishing universal regulatory guidelines that prioritize safety, accuracy, and affordability could accelerate the adoption of POCT worldwide. In this regard, collaboration between international health agencies, regulatory bodies, and industry stakeholders is essential to create a streamlined pathway for innovation and deployment.²¹

The opportunities presented by POCT accessibility are equally compelling, particularly for improving healthcare equity. By decentralizing diagnostic services, POCT reduces the dependency on centralized laboratory infrastructure, making essential diagnostic capabilities available in underserved communities. For instance, rapid diagnostic tests for malaria have significantly improved disease management in endemic areas, enabling early detection and treatment, which are crucial for reducing morbidity and mortality. The widespread implementation of similar programs for other diseases could replicate these successes across various healthcare challenges.²²

Technological advancements are opening new avenues for expanding POCT accessibility. Miniaturized biosensors, integration with mobile health platforms, and the use of artificial intelligence for interpreting results are transforming how diagnostics are conducted and utilized. These innovations not only enhance the functionality of POCT devices but also reduce their cost and complexity, making them more suitable for resource-constrained settings. Combining these technologies with telemedicine has further extended the reach of healthcare services, particularly for patients in geographically isolated regions.²³ Despite these advancements, the need for workforce development remains critical. The effective use of POCT depends on the skills and knowledge of healthcare workers. Continuous training and support mechanisms are essential to ensure the proper operation of these devices and accurate interpretation of results. Programs focused on building capacity among local health workers, particularly in LMICs, could amplify the impact of POCT by integrating it seamlessly into existing healthcare frameworks. Initiatives such as supportive supervision and on-the-job training have demonstrated positive outcomes in enhancing the skills and confidence of healthcare providers using POCT systems.²⁴

Addressing data management and integration is another pivotal opportunity. As POCT devices generate a wealth of real-time diagnostic data, integrating this information into electronic health records can streamline patient management and facilitate data-driven healthcare planning. Furthermore, centralized data systems that aggregate diagnostic information from POCT devices across regions can serve as valuable tools for epidemiological monitoring and public health interventions. This integration could bolster healthcare systems' capacity to respond effectively to outbreaks and other health emergencies.

CONCLUSION

POCT has revolutionized diagnostic capabilities, improving patient outcomes and healthcare efficiency while addressing critical accessibility gaps. Despite challenges in cost, logistics, and regulation, innovative strategies and technological advancements continue to enhance its integration into diverse healthcare settings. The potential for POCT to decentralize diagnostics and

empower underserved communities is immense, requiring global collaboration and investment. By addressing existing barriers, POCT can serve as a cornerstone for equitable and efficient healthcare delivery worldwide.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: Not required

REFERENCES

1. Drenck N-E. Point of care testing in Critical Care Medicine: the clinician's view. *Clin Chimica Acta.* 2001;307(1-2):3-7.
2. Shang M, Guo J, Guo J. Point-of-care testing of infectious diseases: recent advances. *Sens Diagn.* 2023;2:1123-44.
3. Wilson ML, Atun R, DeStigter K, Flanigan J, Fleming KA, Horton S, et al; Commissioners of The Lancet Commission on diagnostics. The Lancet Commission on diagnostics: advancing equitable access to diagnostics. *Lancet.* 2019;393(10185):2018-20.
4. Peeling R, Mabey D. Point-of-care tests for diagnosing infections in the developing world. *Clin Microbiol Infect.* 2010;16(8):1062-9.
5. Jani IV. How point-of-care testing could drive innovation in global health. *N Engl J Med.* 2013;368(24):2319.
6. Ginsburg AS, Van Cleve WC, Thompson MI, English M. Oxygen and pulse oximetry in childhood pneumonia: a survey of healthcare providers in resource-limited settings. *J Trop Pediatr.* 2012;58(5):389-93.
7. Simonsen LM, Eilerskov N, Andersen RS, Soendergaard J, Nielsen JB, Jarbøl DE, et al. Introducing Point-of-Care PCR technology in general practice: Ambiguities, experiences, and perceptions among health care professionals. *Health (London).* 2024;13634593241254988.
8. Aarts GWA, Camaro C, Adang EMM, Rodwell L, van Hout R, Brok G, et al. Pre-hospital rule-out of non-ST-segment elevation acute coronary syndrome by a single troponin: final one-year outcomes of the ARTICA randomised trial. *Eur Heart J Qual Care Clin Outcomes.* 2024;10(5):411-20.
9. Llor C, Benkó R, Bjerrum L. Global restriction of the over-the-counter sale of antimicrobials: does it make sense? *Front Public Health.* 2024;12:1412644.
10. Mehrotra R. JASN: The next chapter. *J Am Soc Nephrol* 2024;35:679-80.
11. Morris NF. A pilot study to assess feasibility of evaluating the safety and efficiency of a simplified diagnostic approach for pulmonary embolism. Queen's University (Canada). 2024.
12. Leong WY, Leong YZ, San Leong W. System-on-Chip (SoC) Medicine. Paper presented at: 2024 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM). 2024.
13. Damilola AF. Assessment of Liver Function Parameters using Remote Monitoring Devices on Hepatitis B Patients. *Int J Adv Multidisc Res Stud.* 2024;4(6):1038-41.
14. Bellini T, Fueri E, Formigoni C, Mariani M, Villa G, Finetti M, et al. Usefulness of Point-of-Care Testing for Respiratory Viruses in a Pediatric Emergency Department Setting. *J Clin Med.* 2024;13(23):7368.
15. Ali A, Hamza A, Saleh H. Trends and future directions in medical laboratory science. *J of Clin Bio Med Adv.* 2024;3(5):1-9.
16. Dhaini L, Verma R, Gadir MA, Singh H, Farghaly M, Abdelmutalib T, et al. Recommendations on Rapid Diagnostic Point-of-care Molecular Tests for Respiratory Infections in the United Arab Emirates. *Open Resp Med J.* 2024;18(1).
17. Florkowski C, Don-Wauchope A, Gimenez N, Rodriguez-Capote K, Wils J, Zemlin A. Point-of-care testing (POCT) and evidence-based laboratory medicine (EBLM)—does it leverage any advantage in clinical decision making? *Crit Rev Clin Lab Sci.* 2017;54(7-8):471-94.
18. Yammouri G, Ait Lahcen A. AI-reinforced wearable sensors and intelligent point-of-care tests. *J Personalized Med.* 2024;14(11):1088.
19. Gama RM, Nebres D, Bramham K. Community Point of Care Testing in Diagnosing and Managing Chronic Kidney Disease. *Diagnostics.* 2024;14(14):1542.
20. McCarthy MS, Kachur SP. Outreach Training and Supportive Supervision: A Package of Strategies That Improves the Quality of Malaria Services and Provides a Model for Monitoring and Evaluating Their Effective Implementation. *Am J Trop Med Hygiene.* 2024;110(3):83.
21. The Lancet Microbe. Rethinking blood culture. *Lancet Microbe.* 2025;6(1):101060.
22. Gupta N, Swindells S, Scarsi KK, Furl R, Thomas DL, Weld ED, et al. Preferences and feasibility of long-acting technologies for treatment of hepatitis C virus in low- and middle-income countries: A survey of providers and policymakers. *J Viral Hepat.* 2024;31(5):221-32.
23. Soni S. Based Point-of-Care Diagnostic Tools: Electrokinetic Nucleic Acid Extraction and Saliva-Based Glucose Detection for Diabetes Monitoring. Electronic Theses and Dissertations of Indian Institute of Science. 2024.
24. Ansbro ÉM, Gill MM, Reynolds J, Shelley KD, Strasser S, Sripiwatana T, et al. Introduction of Syphilis Point-of-Care Tests, from Pilot Study to National Programme Implementation in Zambia: A Qualitative Study of Healthcare Workers' Perspectives on Testing, Training and Quality Assurance. *PLoS One.* 2015;10(6):e0127728.

Cite this article as: Jumah MA, Magliaff FF, Ageel SA, Almutairi JA, Alsubhi WA, Alamer SA, et al. Utilization and benefits of point-of-care testing in primary healthcare. *Int J Community Med Public Health* 2025;12:1105-9.