

Review Article

DOI: <https://dx.doi.org/10.18203/2394-6040.ijcmph20250040>

Challenges and solutions in soft tissue grafting for receding gums

**Maha Assad Munshi^{1*}, Rahaf Khaled Alkholaifi², Wael Mohammed Hummadi³,
Talal Khalid AlGhamdi⁴, Seba Abdullah Almaliki⁴, Sarah Mohammed Alqarni⁵,
Ali Ayed Alkhmmash³, Amira Mohammed Aljared⁴, Talal Abdullah Almohaisen⁶,
Reema Abdulaziz Alghamdi⁷, Abdulkarim Abdullah Alanazi⁸**

¹Department of Periodontics, Al Thager Hospital, Jeddah, Saudi Arabia

²College of Dentistry, Alfarabi Colleges, Riyadh, Saudi Arabia

³College of Dentistry, King Khalid University, Abha, Saudi Arabia

⁴College of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia

⁵Dental Department, King Abdulaziz University Dental Hospital, Jeddah, Saudi Arabia

⁶College of Dentistry, Riyadh Elm University, Riyadh, Saudi Arabia

⁷College of Dentistry, University of Sharjah, Sharjah, UAE

⁸Dental Department, Dr. Tooth Clinics, Al Khobar, Saudi Arabia

Received: 02 January 2025

Accepted: 16 January 2025

***Correspondence:**

Dr. Maha Assad Munshi,

E-mail: maha.munshi@yahoo.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Soft tissue grafting plays a critical role in addressing periodontal challenges, particularly in managing receding gums. It serves both functional and aesthetic purposes, offering solutions for root exposure, sensitivity, and compromised oral health. Advances in surgical techniques and material science have propelled the field forward, providing clinicians with diverse options to achieve optimal outcomes. Autologous grafts remain a standard for many cases, valued for their biocompatibility and success rates, though they present limitations such as donor site morbidity and limited availability. Innovative materials like nanofibrous scaffolds and hydrogels have revolutionized tissue engineering. These materials mimic the extracellular matrix (ECM), promoting cell attachment and tissue integration while enabling the controlled delivery of bioactive agents. The emergence of 3D bioprinting has further enhanced precision, allowing for patient-specific graft designs that integrate vascular structures for improved survival. Decellularized matrices offer a biologically compatible alternative, preserving natural tissue architecture while reducing immune response risks. Patient-specific factors, including systemic health, genetic predispositions, and site-specific anatomy, significantly influence graft success. Advanced computational tools and predictive models now allow for personalized treatment strategies, addressing these variables effectively. Technologies such as bioreactors and imaging systems provide real-time insights into graft performance, bridging the gap between research and clinical application. Future directions focus on integrating cutting-edge biomaterials with regenerative medicine and computational modelling to develop smarter, more adaptive grafting solutions. As the field continues to evolve, the emphasis lies on achieving outcomes that balance functionality, aesthetics, and patient satisfaction while minimizing risks and complications. These advancements promise to reshape the landscape of periodontal therapy, offering innovative solutions for complex clinical challenges.

Keywords: Soft tissue grafting, Periodontal therapy, Tissue engineering, Regenerative medicine, Biomaterials

INTRODUCTION

Gum recession, a common periodontal condition, is characterized by the apical migration of the gingival margin. It results in the exposure of the tooth root surface, leading to a range of issues, including heightened sensitivity, increased susceptibility to root caries, and compromised oral aesthetics. This condition can stem from several causes, such as traumatic brushing, periodontal disease, or anatomical variations like thin gingival biotype. Receding gums not only pose functional challenges but also impact the psychological well-being of patients due to aesthetic concerns.¹ Soft tissue grafting is a cornerstone in the management of receding gums, aimed at restoring both the structural integrity and aesthetic appeal of the gingival tissues. Over the years, multiple surgical techniques have been developed to address this condition effectively. Autogenous grafts, such as free gingival grafts and subepithelial connective tissue grafts, are widely regarded as the gold standard for achieving predictable outcomes. These techniques leverage the patient's own tissue, usually harvested from the palate, to enhance graft survival and integrate seamlessly with the recipient site. However, these approaches often require significant expertise and may lead to postoperative discomfort due to the secondary wound at the donor site.²

In recent years, alternative materials and techniques have emerged to mitigate these challenges. Alloplastic materials, including acellular dermal matrices and xenografts, offer the advantage of eliminating the need for a donor site. These innovations reduce patient morbidity while maintaining comparable success rates in selected cases. Furthermore, the advent of biologic agents such as enamel matrix derivatives and platelet-rich fibrin has revolutionized grafting procedures by enhancing wound healing and promoting tissue regeneration. Despite these advancements, soft tissue grafting remains a procedure fraught with complexities, including variable outcomes in aesthetic zones and difficulties in achieving optimal patient satisfaction.³

The success of soft tissue grafting depends on various factors, such as the quality and quantity of the tissue at the recipient site, the technique employed, and the surgeon's skill. Patient-specific considerations, including systemic health conditions like diabetes or smoking habits, can significantly influence the prognosis. Additionally, the treatment of multiple adjacent recessions poses a unique set of challenges, as it often demands precise planning and execution to ensure uniform outcomes. In the context of anterior teeth, achieving aesthetic harmony with surrounding tissues adds another layer of complexity, requiring an interdisciplinary approach that integrates surgical precision with restorative expertise.⁴

While soft tissue grafting offers a robust solution to gum recession, it is not without limitations. Postoperative

discomfort, prolonged healing periods, and the potential for partial or complete graft failure highlight the need for ongoing innovation in this field. Technological advancements, such as minimally invasive surgical techniques and tissue engineering approaches, hold promise for overcoming these barriers. This review aims to explore the multifaceted challenges associated with soft tissue grafting for receding gums and to highlight current and emerging solutions that seek to optimize clinical outcomes and patient satisfaction.

Soft tissue grafting for receding gums faces numerous challenges, particularly in achieving predictable outcomes and maintaining aesthetic harmony. Tissue engineering plays a pivotal role in advancing this field by providing innovative solutions. Growth factors and scaffold designs have been explored to improve graft integration and tissue regeneration. However, significant challenges persist, such as variability in healing responses and the risk of immune rejection when non-autologous materials are used.⁵ Moreover, achieving consistent vascularization in grafts remains a critical barrier, as it significantly influences the survival and function of transplanted tissues. One promising approach is the addition of soft tissue replacement grafts in plastic periodontal and implant surgery. These grafts, when designed and executed meticulously, can enhance the volume and quality of the gingival tissue while reducing the morbidity associated with harvesting autogenous grafts. Deepithelialized connective tissue grafts, when combined with biologically active solutions such as platelet-rich fibrin, have demonstrated improved clinical outcomes. These approaches not only reduce patient discomfort but also optimize the integration and aesthetic outcomes in challenging anatomical regions, such as the anterior maxilla.⁶

TECHNOLOGICAL ADVANCEMENTS IN SOFT TISSUE GRAFTING TECHNIQUES

Technological innovation in soft tissue grafting has significantly influenced the strategies used to address receding gums. Advances in biomaterials, computer-aided tissue engineering, and regenerative medicine have transformed how grafting techniques are applied in periodontal therapy. One noteworthy innovation is the integration of guided tissue regeneration with advanced biomaterials. These materials, designed to facilitate endogenous tissue regeneration, offer solutions for repairing periodontal defects by combining mechanical stability with biological activity. The application of biocompatible scaffolds provides structural support and promotes cellular proliferation, essential for tissue integration.⁷

The emergence of three-dimensional (3D) bioprinting has further enhanced the precision and effectiveness of grafting techniques. This technology allows for the creation of patient-specific scaffolds, tailored to the anatomical needs of the recipient site. Utilizing bioinks

that incorporate growth factors and stem cells, 3D bioprinting creates constructs that closely mimic native tissue architecture. Such constructs not only improve the predictability of graft outcomes but also reduce reliance on donor tissues, addressing the challenge of limited availability and donor site morbidity.⁸ Regenerative medicine has also introduced the use of growth factor delivery systems in soft tissue grafting. Controlled release mechanisms, often integrated into biomaterials, enable sustained delivery of bioactive molecules to the graft site. This approach enhances angiogenesis and cellular migration, critical factors in graft survival and integration. Technological improvements in biomaterial coatings and nanotechnology have optimized these delivery systems, ensuring that therapeutic agents are released in a temporally and spatially controlled manner, improving the overall effectiveness of the grafting procedure.⁹

Computer-aided tissue engineering has revolutionized pre-surgical planning and execution in soft tissue grafting. By leveraging imaging technologies such as cone-beam computed tomography (CBCT) and computer-aided design (CAD), clinicians can generate detailed anatomical models of the graft site. These models guide the fabrication of graft materials and allow precise simulation of graft placement, minimizing errors during surgery. The incorporation of virtual reality and augmented reality further enhances the training and skill acquisition for complex grafting procedures, ultimately benefiting clinical outcomes.¹⁰ Biomaterial technology has also addressed the challenge of vascularization in soft tissue grafts. Strategies such as prevascularization and the incorporation of angiogenic factors within graft scaffolds have improved the success rates of these procedures. Techniques like in-advance angiogenesis promote vascular network formation before graft placement, enhancing tissue integration and reducing the risk of necrosis. These approaches underscore the importance of integrating biological insights into the design of technological solutions for soft tissue grafting.⁶

BIOLOGICAL AND PATIENT-SPECIFIC FACTORS IMPACTING SUCCESS RATES

The effectiveness of soft tissue grafting is shaped by a range of biological and patient-specific factors that interact to influence both short- and long-term outcomes. These factors, encompassing tissue properties, systemic health, genetic predispositions, and the specifics of the surgical site, determine the procedural approach and prognosis. A deeper understanding of these elements is essential for enhancing clinical outcomes. One of the most critical biological factors is the host tissue's inherent biochemical and biomechanical properties. Tissue elasticity, the extent of vascularization, and levels of inflammatory markers significantly affect graft survival. Highly vascularized tissues, for example, provide a rich environment for angiogenesis, which is crucial for graft integration. However, the biochemical environment in certain systemic conditions, such as diabetes, can impair

vascular supply and slow tissue regeneration. To address these challenges, researchers have developed bioreactors that replicate the physiological conditions of recipient sites. These systems allow for the testing of graft materials under controlled conditions, helping clinicians predict outcomes and tailor interventions.¹¹

Patient-specific health factors play an equally vital role in shaping the success of soft tissue grafts. Chronic conditions such as diabetes, cardiovascular disease, and autoimmune disorders compromise wound healing by affecting systemic inflammation, cell proliferation, and angiogenesis. Smoking further exacerbates these issues by reducing oxygenation in tissues, leading to delayed healing and increased graft failure rates. The integration of personalized medicine into periodontal therapies has helped address these issues. For example, predictive algorithms that consider individual health profiles are being used to optimize surgical plans and enhance graft success.¹² The immunological response to graft materials is another area of concern that is highly patient-specific. The use of ECM scaffolds, derived from xenogenic or allogenic sources, has become common in soft tissue grafting due to their ability to support cellular adhesion and differentiation. However, variability in immunological tolerance among patients can lead to graft rejection or chronic inflammation. Preoperative assessments to gauge compatibility, along with advancements in immunomodulatory graft coatings, have shown promise in reducing these adverse reactions. Additionally, autologous grafts, although ideal in terms of biocompatibility, are often limited by donor site morbidity and tissue availability.¹³

Anatomical characteristics of the recipient site, including the thickness of keratinized tissue, the dimensions of the gingival defect, and the proximity to neighboring anatomical structures, further influence the success of soft tissue grafting. In esthetically critical areas, such as the anterior maxilla, achieving a seamless integration with the surrounding tissue is a primary concern. Techniques such as ridge preservation, which involve soft tissue augmentation post-extraction, have proven effective in minimizing volumetric tissue loss. However, these procedures require precise surgical techniques and a comprehensive understanding of the anatomical landscape to achieve optimal results.¹⁴

Recent advances in computational tools have significantly enhanced the ability to personalize soft tissue grafting procedures. 3D imaging technologies, such as CBCT, allow clinicians to visualize anatomical structures in great detail, facilitating more accurate graft placement. These imaging techniques, combined with CAD and computer-aided manufacturing, enable the creation of patient-specific graft models. These technologies reduce the margin of error during surgery and provide insights into potential complications, improving both efficiency and success rates. Furthermore, simulation tools that incorporate data from preoperative scans can predict

postoperative outcomes, helping clinicians refine surgical strategies.¹⁵ The integration of biological insights with technological advancements is paving the way for more effective and predictable soft tissue grafting outcomes. Strategies that incorporate the unique biological and patient-specific factors of each case hold the potential to significantly reduce complications and enhance clinical success.

INNOVATIVE MATERIALS AND FUTURE DIRECTIONS IN SOFT TISSUE GRAFTING

Advancements in materials science and regenerative medicine have propelled the field of soft tissue grafting, providing innovative solutions to longstanding challenges in periodontal therapy. These materials aim to enhance biological compatibility, reduce patient morbidity, and improve procedural outcomes, while exploring novel directions to optimize soft tissue reconstruction. Nanofibrous scaffolds represent a breakthrough in soft tissue engineering, offering structural support and mimicking the ECM of natural tissues. These scaffolds are fabricated using electrospinning techniques, which allow the creation of fibers at the nanoscale. Their high surface area-to-volume ratio facilitates cellular adhesion, proliferation, and differentiation. Functionalizing these scaffolds with growth factors and bioactive agents has further enhanced their ability to guide tissue regeneration. Research continues to focus on improving the mechanical strength and biodegradability of nanofibrous scaffolds to meet the demands of clinical applications.¹⁶ Hydrogels have emerged as versatile biomaterials in soft tissue grafting. Their high-water content mimics natural tissue environments, promoting cell viability and facilitating nutrient exchange. Advances in hydrogel technology have enabled the incorporation of stem cells and controlled-release systems for bioactive molecules. This integration enhances tissue regeneration and reduces the risk of postoperative complications. Current research explores the development of smart hydrogels, capable of responding to environmental stimuli such as pH or temperature, to achieve dynamic and adaptive tissue repair.¹⁷

The use of 3D bioprinting in fabricating patient-specific grafts has revolutionized the customization of tissue engineering solutions. Bioprinting enables precise control over the spatial arrangement of cells, biomaterials, and bioactive agents. By using bioinks composed of ECM components and cellular aggregates, 3D bioprinting replicates the intricate architecture of native tissues. This technology not only improves the structural fidelity of grafts but also allows for the incorporation of vascular networks, a critical factor for graft survival and integration. Continued advancements in bioprinting hardware and bioink formulations are expected to expand its clinical applications.¹⁸ Another area of innovation involves decellularized tissue matrices, which leverage the biological and mechanical properties of donor tissues. These matrices undergo a decellularization process to

remove cellular components while preserving the ECM. This approach minimizes the risk of immune rejection and provides a natural scaffold for host cell colonization and tissue remodeling. Efforts are ongoing to optimize decellularization techniques and incorporate bioactive modifications to further enhance their regenerative potential. These materials have shown promise in addressing complex defects where autologous grafts are limited.¹⁹ Looking ahead, the integration of tissue engineering with advanced computational modeling offers promising avenues for personalized medicine. Computational tools allow for the simulation of graft performance under various conditions, facilitating the design of tailored solutions based on patient-specific anatomical and physiological parameters. These models are particularly valuable in evaluating the long-term behavior of graft materials, helping to predict outcomes and guide clinical decision-making. As these technologies mature, they hold the potential to reduce reliance on trial-and-error approaches in grafting procedures.²⁰

CONCLUSION

The evolution of soft tissue grafting techniques, fueled by advancements in biomaterials, tissue engineering, and computational tools, has significantly improved clinical outcomes. Innovations such as nanofibrous scaffolds, hydrogels, and 3D bioprinting offer tailored and effective solutions for tissue regeneration. As research continues, integrating these technologies with personalized medicine holds the promise of transforming periodontal therapy. The future of soft tissue grafting lies in bridging biological complexity with cutting-edge innovation for enhanced patient care.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: Not required

REFERENCES

1. Levine RA, Huynh-Ba G, Cochran DL. Soft tissue augmentation procedures for mucogingival defects in esthetic sites. *Int J Oral Maxillofacial Implants.* 2014;29:155-85.
2. Lazarov A. Soft-Tissue Augmentation in Periodontally Compromised Patients during Immediate Placement and Immediate Loading Dental Implant Surgery-A Retrospective Study. *Ann Maxillofacial Surg.* 2023;13(1):37-43.
3. Caceres A, Coscia CC, Farrell ML. Optimizing a Gum Graft for Periodontal Surgery, Worcester Polytechnic Institute. 2013.
4. Nwhator SO. Challenges of periodontal plastic surgery in a depressed economy: a report of two cases. *Res Rep Trop Med.* 2010;13-17.
5. Ikada Y. Challenges in tissue engineering. *J Royal Society Interface.* 2006;3(10):589-601.
6. Zühr O, Bäumer D, Hürzeler M. The addition of soft tissue replacement grafts in plastic periodontal and

implant surgery: critical elements in design and execution. *J Clin Periodontol.* 2014;41:S123-42.

- 7. Chen F-M, Zhang J, Zhang M, An Y, Chen F, Wu Z-F. A review on endogenous regenerative technology in periodontal regenerative medicine. *Biomaterials.* 2010;31(31):7892-27.
- 8. Dzobo K, Thomford NE, Senthilbano DA, Hendrina S, Arielle R, Collet D, et al. Advances in regenerative medicine and tissue engineering: innovation and transformation of medicine. *Stem Cells Int.* 2018;2018(1):2495848.
- 9. Tabata Y. Biomaterial technology for tissue engineering applications. *J Royal Society Interface.* 2009;6(3):S311-24.
- 10. Sun W, Lal P. Recent development on computer aided tissue engineering-a review. *Computer Methods Programs Biomed.* 2002;67(2):85-103.
- 11. Sarkar N, Bhumiratana S, Geris L, Papantoniou I, Grayson WL. Bioreactors for engineering patient-specific tissue grafts. *Nature Rev Bioengineering.* 2023;1(5):361-77.
- 12. Bassetti M, Kaufmann R, Salvi GE, Sculean A, Bassetti R. Soft tissue grafting to improve the attached mucosa at dental implants: A review of the literature and proposal of a decision tree. *Quintessence Int.* 2015;46(6):499-510.
- 13. Hodde J, Hiles M. Constructive soft tissue remodelling with a biologic extracellular matrix graft: overview and review of the clinical literature. *Acta Chirurgica Belgica.* 2007;107(6):641-7.
- 14. Chappuis V, Araújo MG, Buser D. Clinical relevance of dimensional bone and soft tissue alterations post-extraction in esthetic sites. *Periodontology 2000.* 2017;73(1):73-83.
- 15. Auricchio F, Conti M, Marconi S, Reali A, Tolenaar JL, Trimarchi S. Patient-specific aortic endografting simulation: from diagnosis to prediction. *Computers Biol Med.* 2013;43(4):386-94.
- 16. Baker BM, Handorf AM, Ionescu LC, Li W-J, Mauck RL. New directions in nanofibrous scaffolds for soft tissue engineering and regeneration. *Expert Rev Med Devices.* 2009;6(5):515-32.
- 17. Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. *J Orthopaed Surg Res.* 2014;9:1-27.
- 18. Mao AS, Mooney DJ. Regenerative medicine: Current therapies and future directions. *Proceedings of the National Academy of Sciences.* 2015;112(47):14452-9.
- 19. Fisher MB, Mauck RL. Tissue engineering and regenerative medicine: recent innovations and the transition to translation. *Tissue Engineering Part B: Reviews.* 2013;19(1):1-13.
- 20. Hutmacher DW, Schantz JT, Lam CXF, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. *J Tissue Engineer Regenerat Med.* 2007;1(4):245-60.

Cite this article as: Munshi MA, Alkholaifi RK, Hummadi WM, AlGhamdi TK, Almalki SA, Alqarni SM, et al. Challenges and solutions in soft tissue grafting for receding gums. *Int J Community Med Public Health* 2025;12:999-1003.