Review Article

DOI: https://dx.doi.org/10.18203/2394-6040.ijcmph20244065

The impact of lifestyle modifications on disease progression in patients with lupus

Khalid Ghazi Taju^{1*}, Abdulmohsen Saleh Aloufi², Qassim Nabeel Alsehlawi³, Raneem Yousef Alahmadi⁴, Sarah Sami Alsubaie⁵, Nasser Omar Alamri⁶, Mohammed Hamed Qasem⁷, Ahmed Abdullah Alharbi⁸, Ibtisam Ibrahim Alsayed⁹, Mohannad Yousuf Alhindi⁵

Received: 08 December 2024 **Accepted:** 23 December 2024

*Correspondence:

Dr. Khalid Ghazi Taju,

E-mail: dr.khalid.taju@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a complex pathogenesis influenced by genetic, environmental, and lifestyle factors. This narrative review explores the impact of lifestyle modifications on SLE progression, focusing on diet, physical activity, smoking, alcohol, caffeine, and ultraviolet radiation (UVR) exposure. Evidence highlights the benefits of n-3 polyunsaturated fatty acids (PUFAs), vitamin D optimization, and calorie restriction (CR) in reducing inflammation and disease activity, while excessive n-6 PUFA intake worsens outcomes. Regular physical exercise improves fatigue, cardiovascular fitness, and psychological well-being, whereas smoking and UVR exposure are consistently associated with heightened disease activity and organ damage. The effects of alcohol and caffeine are less clear, with moderate alcohol intake showing potential protective effects and caffeine yielding inconclusive results. This review underscores the importance of lifestyle modifications as integral to SLE management, complementing pharmacological therapies to improve quality of life and long-term outcomes.

Keywords: SLE, Lifestyle, Diet, Exercise

INTRODUCTION

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by systemic inflammation and autoantibody production. It can affect multiple organs, including the skin, kidneys, joints, cardiovascular system, and central nervous system. SLE predominantly affects women, particularly those of

reproductive age, with a female-to-male ratio of approximately 9:1. Prevalence varies globally, ranging from 20 to 70 cases per 100,000 individuals, with higher rates reported in populations of African, Hispanic, and Asian descent.¹ The heterogeneous presentation of SLE, along with its fluctuating disease course, poses challenges for diagnosis and management.²

¹Department of Internal Medicine, Al Thager Hospital, Jeddah, Saudi Arabia

²Eradah and Mental Health Hospital, Al Kharj, Saudi Arabia

³College of Medicine, Sechenov University, Moscow, Russia

⁴College of Medicine, Taibah University, Medina, Saudi Arabia

⁵College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia

⁶College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia

⁷Department of Internal Medicine, Saudi German Hospital, Dammam, Saudi Arabia

⁸East Jeddah Hospital, Jeddah, Saudi Arabia

⁹College of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia

The pathogenesis of SLE is complex, involving genetic, environmental, and immunological factors. Numerous genetic susceptibility loci have been identified, including variants in immune regulatory genes such as N-acetyltransferase 2 (NAT2) and signal transducers and activators of transcription 4 (STAT4). These genetic factors interact with environmental triggers, including infections, UVR, and lifestyle factors, to disrupt immune tolerance and initiate autoimmunity. Despite these insights, the exact mechanisms underlying SLE remain incompletely understood, emphasizing the need for further investigation into modifiable environmental and lifestyle factors that contribute to disease development and progression.³

Pharmacological therapies for SLE, such as corticosteroids, antimalarials, and immunosuppressive agents, have significantly improved survival and reduced disease activity. However, these treatments are associated with substantial side effects, including infections, hypertension, and osteoporosis. Additionally, the heterogeneity of SLE means that no single therapeutic approach is universally effective. This highlights the need for complementary strategies, including lifestyle modifications, to optimize disease management.⁴

Lifestyle factors, such as diet, cigarette smoking, alcohol consumption, caffeine intake, and UVR exposure, have garnered attention as modifiable contributors to SLE. Research suggests that these factors may influence disease susceptibility, activity, and severity by modulating immune responses, inflammation, and oxidative stress. For instance, dietary components such as n-3 PUFAs and vitamin D have demonstrated immunomodulatory effects, while cigarette smoking and UVR exposure are associated with exacerbated disease activity and organ damage. Alcohol and caffeine consumption have shown mixed effects, with some studies indicating protective roles and others suggesting increased risk. 6

Understanding how these lifestyle factors impact SLE at molecular and clinical levels is essential for developing comprehensive management strategies. Incorporating lifestyle interventions alongside pharmacological treatments could enhance disease outcomes, reduce complications, and improve quality of life for patients.⁷ This review aims to provide a detailed analysis of the current evidence linking diet, smoking, alcohol, caffeine, and UVR exposure to SLE. By exploring these associations, the review seeks to inform future research and guide the development of tailored interventions for SLE patients.

LITERATURE SEARCH

This narrative review is based on a comprehensive literature search conducted on 19 November 2024 in the Medline and Cochrane databases. Utilizing medical subject headings (MeSH) and relevant keywords, the search aimed to identify studies examining the impact of

lifestyle modifications on disease progression in patients with SLE. To ensure thoroughness, a manual search was also conducted using Google Scholar, and the reference lists of identified papers were reviewed to locate additional relevant studies. The review focused on articles addressing the effects of diet, physical exercise, smoking, alcohol and caffeine consumption, and UVR exposure on SLE progression. No restrictions were applied regarding publication date, language, participant age, or type of publication, ensuring a broad and inclusive exploration of the available literature.

DISCUSSION

Diet and SLE

Dietary factors influence immune function and inflammation, playing a critical role in SLE pathogenesis and management. Key components of diet studied in SLE include PUFAs, CR, and vitamin D levels.⁶

The contrasting roles of n-3 and n-6 PUFAs are welldocumented in SLE. Dietary intake of n-3 PUFAs, primarily derived from fish oil, has demonstrated significant anti-inflammatory effects. In murine models of SLE, n-3 PUFA supplementation reduced autoantibody production, proteinuria, and renal damage, key markers of disease progression.⁸⁻¹⁰ Clinical trials in humans have corroborated these findings, showing improvements in endothelial function and reductions in systemic inflammation following supplementation with n-3 PUFA.¹¹ Moreover, a double blinded factorial trial reported a decline in revised systemic lupus activity measure (SLAM-R) scores among SLE patients receiving eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) compared to a placebo group. 12 According to another study, daily oral intake of moderate doses of EPA and DHA led to sustained remission of SLE.¹³

N-3 PUFA mitigates inflammatory and autoimmune responses through anti-inflammatory and immune-modulating mechanisms. It inhibits inflammatory cytokine production, lymphocyte proliferation, cytotoxic T cell and natural killer cell activities, macrophage cytotoxicity, neutrophil/monocyte chemotaxis, MHC Class II expression, and antigen presentation. ^{14,15} Experimental studies show that N-3 PUFA lowers plasma levels of cytokines such as IL-6 and tumor necrosis factor alpha (TNF-α). N-3 PUFA enhances antioxidant enzyme production and down-regulates CD4⁺ T cell-related gene expression, including Cd80 and Il6. These effects collectively reduced inflammation, oxidative stress, and autoimmune activity in murine SLE models. ^{10,16,17}

In contrast, n-6 PUFAs, found in vegetable oils, have been associated with increased inflammatory responses. A study conducted in an animal SLE model, revealed that n-6 PUFA-rich diets exacerbated renal damage and autoantibody production, likely through upregulation of inflammatory gene expression in CD4⁺ T cells. ¹⁰

CR has shown promise in alleviating SLE manifestations. In animal models, CR reduced proteinuria, glomerulonephritis, and immune complex deposition, while extending lifespan. These benefits are mediated by suppression of pro-inflammatory cytokines, including interferon-alpha (IFN- α) and TNF- α , and enhanced antioxidant defences. ¹⁸

CR also reduces circulating levels of leptin, a proinflammatory adipokine. In SLE models, hypoleptinemia induced by CR expanded regulatory T-cell populations and decreased the prevalence of Th17 cells, contributing to reduced disease severity. 19,20 Human studies further indicate that CR improves fatigue, a common and debilitating symptom in SLE patients, underscoring its potential as an adjunctive therapy. 21

Vitamin D deficiency is prevalent in SLE patients and has been linked to increased disease activity and poor outcomes. 22-24 However, some studies have found no association between vitamin D deficiency and SLE pathogenesis. 25,26 Vitamin D modulates immune responses by inhibiting B-cell activation, reducing proinflammatory cytokine production, and promoting regulatory T-cell activity. Clinical studies have demonstrated that vitamin D supplementation improves immune homeostasis in SLE, reducing disease activity and inflammation. 27-29 However, inconsistencies in findings necessitate further investigation to clarify the relationship between vitamin D and SLE progression.

Physical exercise and SLE

Physical activity is increasingly recognized as a valuable non-pharmacological intervention for managing SLE. In Blaess et al outlined evidence-based recommendations for physical activity in SLE, emphasizing its potential to improve quality of life and physical health outcomes. Their consensus highlighted the importance of medical evaluation before initiating exercise programs, allowing for the identification of contraindications and adaptation of regimens based on individual capacities, preferences, and comorbidities. Specific considerations, such as avoiding inflamed joints and using photoprotection or appropriate clothing for Raynaud's phenomenon, are essential for safety. For patients with conditions like osteonecrosis or Jaccoud's syndrome, tailored assessments are necessary prior to commencing activity. Structured exercise programs should include low-intensity warm-ups, cooling-down periods, and a combination of aerobic and resistance training exercises. Recommendations suggest 150-300 minutes of moderate aerobic activity weekly, coupled with strengthening exercises on at least 2 days/week, with resistance training involving 1-3 sets of 812 repetitions.³⁰

Physical activity yields significant benefits in SLE, both physically and mentally. Regular exercise is associated with reduced fatigue, less pain, better sleep, and improved psychological well-being, including reduced depressive symptoms.^{31,32} A 12-week progressive aerobic exercise program has been shown to improve fatigue significantly in women with SLE.³³ Cardiovascular fitness and flexibility improvements may also mitigate the inflammatory effects of increased body mass and adiposity. Regular exercise, particularly when combining aerobic and resistance training, enhances muscle strength and cardiorespiratory fitness without exacerbating arterial stiffness or oxidative stress.³⁴ Furthermore, physically fit women with SLE exhibit favorable body composition parameters, including lower body mass index and waist-to-hip ratios, which correlate with reduced cardiovascular risk and improved health-related quality of life.³⁵

The immunological effects of exercise in SLE are promising but warrant further exploration. Acute aerobic exercise has been shown to down-regulate inflammatory gene expression in leukocytes, with no evidence of inducing inflammation or disease flares.^{36,37} These findings suggest a potential role for exercise in reducing systemic inflammation. Despite these benefits, some studies report limited impact of exercise on disease activity or fatigue, underscoring the variability of outcomes and the need for personalized approaches. 38,39 Intervention programs should prioritize patients with significant fatigue or greater organ damage, as these groups tend to exhibit the most pronounced reductions in physical activity levels. Overall, physical activity represents a crucial component of holistic SLE management, complementing pharmacological therapies to enhance physical health and quality of life.

Cigarette smoking

Cigarette smoking is linked to worsening clinical outcomes in SLE. It is associated with photosensitivity, active rash, higher SLE disease activity index (SLEDAI) scores, pleuritis, peritonitis, neuropsychiatric manifestations, thrombosis, cardiovascular and peripheral vascular diseases, and metabolic syndrome. Smoking also increases anti-phospholipid antibody production and reduces the effectiveness of SLE treatments. A Chinese study found that smoking exacerbated SLE symptoms like photosensitivity, nephropathy, and proteinuria, though SLEDAI scores did not differ significantly between smokers and nonsmokers.

Mechanistic studies suggest that smoking exacerbates SLE through oxidative stress and epigenetic modifications. ^{42,43} DNA methylation patterns altered by smoking influence the expression of immune-related genes, potentially contributing to autoimmunity. Notably, the cessation of smoking may reverse some epigenetic changes, emphasizing the importance of smoking cessation in SLE management. ⁴⁴

Alcohol consumption

The relationship between alcohol and SLE is complex. While early studies suggested no association, 45,46 recent

research indicates that moderate alcohol consumption may have a protective effect against SLE. 47,48 Although the mechanism by which alcohol consumption reduces SLE risk remains unclear, proposed theories highlight its anti-inflammatory and antioxidant effects. Moderate alcohol intake has been shown to suppress the NF-κB pathway, reducing pro-inflammatory cytokines such as TNF-α and IL-1β while increasing anti-inflammatory IL-10.49 Compounds in wine, like glycerol and ascorbate, protect against oxidative DNA damage. 50 Epidemiological evidence suggests moderate alcohol consumption benefits inflammatory regulation compared to abstinence or heavy drinking, potentially lowering systemic inflammation and cardiovascular disease risk. 51

Few studies have explored the impact of alcohol consumption on disease activity and damage in SLE. A previous cross-sectional study of SLE patients found an independent association between alcohol abstinence and an increased risk of nephritis. This supports earlier in vivo and in vitro research suggesting that alcohol may exert an anti-inflammatory effect, potentially reducing disease progression. Similarly, a Korean study reported that there was no significant relation between alcohol consumption and disease activity measured by the SLEDAI-2K scoring system. These findings imply that while alcohol may not exacerbate SLE manifestations, its overall effect on disease activity remains inconclusive and warrants further investigation, particularly regarding alcohol dose and type.

Caffeine-rich beverages

Caffeine, functioning as a non-specific phosphodiesterase inhibitor, appears to interact with various components of the immune system, affecting both innate and adaptive responses. Studies on caffeine consumption and SLE disease activity reported positive results. They suggested that moderate caffeine intake attenuated SLE activity, potentially influencing chronic damage, while lower caffeine intake was linked to more frequent major organ involvement, including renal and neuropsychiatric manifestations, as well as anti-dsDNA positivity. Further, coffee consumption was positively associated with clinical remission over a six-month period. 54,55 gene-environment interactions Nevertheless, modulate these effects, as demonstrated by previous research linking NAT2 genotypes to varying SLE risks associated with caffeine consumption.⁵⁶

UVR

Pro-inflammatory effects of UV-A include stimulating IL-1 and IL-6 and altering lymphocyte function. However, UV-A also exhibits anti-inflammatory properties, leading to its use in phototherapy. These effects include T and B cell apoptosis and the reduction of inflammatory cytokines like IL-4, IL-10, and interferon-γ. Phototherapy using UV-A, often combined with psoralens, modifies T-cell receptor specificity and lymphocyte function.^{57,58} In

SLE mice, UV-A improved survival and reduced anti-DNA antibodies, likely due to preserving Langerhans' cell function and decreasing B-cell activation. 59,60

UV-B radiation has immunosuppressive effects, primarily through DNA damage, which induces antigen-specific immunotolerance by generating regulatory T cells. UV-B can also promote SLE-related mechanisms, such as redistributing nuclear antigens to the cell surface and producing novel autoantigens. Additionally, UV-B damages keratinocytes and other cells through ROS production and DNA damage, including strand breaks and pyrimidine dimer formation. UV-B may also inhibit DNA methylation, enhancing lymphocyte function and autoreactive T cell production, as demonstrated in SLE-prone mice. 61

It has been shown that increased UV radiation exposure can exacerbate pre-existing skin conditions in SLE patients, often causing new lesions on sun-exposed areas, including macular, papular, bullous lesions, and erythema. UV exposure can also trigger systemic SLE flares, manifesting as weakness, fatigue, fevers, or joint pain. However, patient-reported photo-induced symptoms often do not align with physician assessments or laboratory markers of SLE disease activity. Sunlight exposure likely contributes to both the onset and exacerbation of SLE, particularly in individuals prone to severe sunburns with blistering or rashes following midday sun exposure. 62 Therefore, photoprotection through sunscreen use and clothing is a cornerstone of SLE management to mitigate UV-related disease activity.

CONCLUSION

Lifestyle modifications, including dietary adjustments, smoking cessation, moderated alcohol intake, and UV protection, are critical for managing SLE. Evidence supports the benefits of n-3 PUFA supplementation, CR, and vitamin D optimization in reducing disease activity. Smoking and UV exposure unequivocally worsen disease outcomes, while the roles of alcohol and caffeine remain less clear.

Future research should focus on elucidating the mechanisms underlying these associations and designing targeted interventions. Integrating lifestyle modifications with pharmacologic treatments may enhance outcomes and quality of life for SLE patients, offering a holistic approach to disease management.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

REFERENCES

1. Barber MRW, Drenkard C, Falasinnu T, Alberta H, Anselm M, Nien YK, et al. Global epidemiology of

- systemic lupus erythematosus. Nat Rev Rheumatol. 2021;17(9):515-32.
- 2. Connelly K, Morand EF. Systemic lupus erythematosus: a clinical update. Intern Med J. 2021;51(8):1219-28.
- 3. Chen J, Liao S, Pang W, Fengbiao G, Lawei Y, Hua-Feng L, et al. Life factors acting on systemic lupus erythematosus. Front Immunol. 2022;13:986239.
- Geertsema-Hoeve BC, Sickinghe AA, van Schaik-Mast SJ, Spierings J, van Laar JM, Limper M. The effects of lifestyle interventions on disease activity and quality of life in patients with systemic lupus erythematosus: A systematic review. Autoimmun Rev. 2024;23(10):103609.
- 5. Rodriguez Huerta MD, Trujillo-Martin MM, Rua-Figueroa I, Leticia CP, Raúl QL, Pedro SA, et al. Healthy lifestyle habits for patients with systemic lupus erythematosus: A systemic review. Semin Arthritis Rheum. 2016;45(4):463-70.
- 6. Constantin MM, Nita IE, Olteanu R, Traian C, Stefana B, Clara M, Anca R. Significance and impact of dietary factors on systemic lupus erythematosus pathogenesis. Exp Ther Med. 2019;17(2):1085-90.
- 7. Tsoi A, Gomez A, Bostrom C, Denise P, Jun WC, Charlotte GG, et al. Efficacy of lifestyle interventions in the management of systemic lupus erythematosus: a systematic review of the literature. Rheumatol Int. 2024;44(5):765-78.
- 8. Prickett JD, Robinson DR, Steinberg AD. Effects of dietary enrichment with eicosapentaenoic acid upon autoimmune nephritis in female NZB X NZW/F1 mice. Arthritis Rheum. 1983;26(2):133-9.
- 9. Pestka JJ. n-3 polyunsaturated fatty acids and autoimmune-mediated glomerulonephritis. Prostaglandins Leukot Essent Fatty Acids. 2010;82(4-6):251-8.
- Pestka JJ, Vines LL, Bates MA, He K, Langohr I. Comparative effects of n-3, n-6 and n-9 unsaturated fatty acid-rich diet consumption on lupus nephritis, autoantibody production and CD4+ T cell-related gene responses in the autoimmune NZBWF1 mouse. PLoS One. 2014;9(6):e100255.
- 11. Li X, Bi X, Wang S, Zhang Z, Li F, Zhao AZ. Therapeutic potential of omega-3 polyunsaturated fatty acids in human autoimmune diseases. Front Immunol. 2019;10:2241.
- 12. Duffy EM, Meenagh GK, McMillan SA, Strain JJ, Hannigan BM, Bell AL. The clinical effect of dietary supplementation with omega-3 fish oils and/or copper in systemic lupus erythematosus. J Rheumatol. 2004;31(8):1551-6.
- 13. Das UN. Beneficial effect of eicosapentaenoic and docosahexaenoic acids in the management of systemic lupus erythematosus and its relationship to the cytokine network. Prostaglandins Leukot Essent Fatty Acids. 1994;51(3):207-13.
- 14. Crowe W, Allsopp PJ, Nyland JF. Inflammatory response following in vitro exposure to methylmercury with and without n-3 long chain polyunsaturated fatty acids in peripheral blood

- mononuclear cells from systemic lupus erythematosus patients compared to healthy controls. Toxicol *In Vitro*. 2018;52:272-8.
- 15. Akerele OA, Cheema SK. A diet enriched in longer chain omega-3 fatty acids reduced placental inflammatory cytokines and improved fetal sustainability of C57BL/6 mice. Prostaglandins Leukot Essent Fatty Acids. 2018;137:43-51.
- Chandrasekar B, Fernandes G. Decreased proinflammatory cytokines and increased antioxidant enzyme gene expression by omega-3 lipids in murine lupus nephritis. Biochem Biophys Res Commun. 1994;200(2):893-8.
- 17. Chandrasekar B, Troyer DA, Venkatraman JT, Fernandes G. Dietary omega-3 lipids delay the onset and progression of autoimmune lupus nephritis by inhibiting transforming growth factor beta mRNA and protein expression. J Autoimmun. 1995;8(3):381-3.
- 18. Imoto AM, Gottems LB, Salomon AL, Helbert ECES, Império LJ, Maria SP, et al. The impact of a low-calorie, low-glycemic diet on systemic lupus erythematosus: a systematic review. Adv Rheumatol. 2021;61(1):66.
- 19. Liu Y, Yu Y, Matarese G, La Cava A. Cutting edge: fasting-induced hypoleptinemia expands functional regulatory T cells in systemic lupus erythematosus. J Immunol. 2012;188(5):2070-3.
- 20. Fujita Y, Fujii T, Mimori T, Tomomi S, Takuji N, Haruka I, et al. Deficient leptin signaling ameliorates systemic lupus erythematosus lesions in MRL/Mp-Fas lpr mice. J Immunol. 2014;192(3):979-84.
- 21. Davies RJ, Lomer MC, Yeo SI, Avloniti K, Sangle SR, D'Cruz DP. Weight loss and improvements in fatigue in systemic lupus erythematosus: a controlled trial of a low glycaemic index diet versus a calorie restricted diet in patients treated with corticosteroids. Lupus. 2012;21(6):649-55.
- 22. Amital H, Szekanecz Z, Szucs G, Dankó K, Nagy E, Csépány T, et al. Serum concentrations of 25-OH vitamin D in patients with systemic lupus erythematosus (SLE) are inversely related to disease activity: is it time to routinely supplement patients with SLE with vitamin D? Ann Rheum Dis. 2010;69(6):1155-7.
- 23. Souto M, Coelho A, Guo C, Mendonça L, Argolo S, Papi J, et al. Vitamin D insufficiency in Brazilian patients with SLE: prevalence, associated factors, and relationship with activity. Lupus. 2011;20(10):1019-26.
- 24. Hamza RT, Awwad KS, Ali MK, Hamed AI. Reduced serum concentrations of 25-hydroxy vitamin D in Egyptian patients with systemic lupus erythematosus: relation to disease activity. Med Sci Monit. 2011;17(12):CR711-8.
- 25. Costenbader KH, Feskanich D, Holmes M, Karlson EW, Benito-Garcia E. Vitamin D intake and risks of systemic lupus erythematosus and rheumatoid arthritis in women. Ann Rheum Dis. 2008;67(4):530-5.

- 26. Hiraki LT, Munger KL, Costenbader KH, Karlson EW. Dietary intake of vitamin D during adolescence and risk of adult-onset systemic lupus erythematosus and rheumatoid arthritis. Arthritis Care Res (Hoboken). 2012;64(12):1829-36.
- 27. Ding Y, Liao W, He XJ, Xiang W. Effects of 1,25(OH)(2) D(3) and vitamin D receptor on peripheral CD4(+) /CD8(+) double-positive T lymphocytes in a mouse model of systemic lupus erythematosus. J Cell Mol Med. 2017;21(5):975-85.
- 28. Reynolds JA, Rosenberg AZ, Smith CK, Jamie CS, Gillian IR, Tracy AB, et al. Brief report: Vitamin D deficiency is associated with endothelial dysfunction and increases type I interferon gene expression in a murine model of systemic lupus erythematosus. Arthrit Rheumat. 2016;68(12):2929-35.
- 29. Yap KS, Morand EF. Vitamin D and systemic lupus erythematosus: continued evolution. Int J Rheum Dis. 2015;18(2):242-9.
- 30. Blaess J, Geneton S, Goepfert T. Recommendations for physical activity and exercise in persons living with Systemic Lupus Erythematosus (SLE): consensus by an international task force. RMD Open. 2024;10(2):10.
- 31. Wohland H, Aringer M, Leuchten N. Physical exercise is associated with less fatigue, less pain and better sleep in patients with systemic lupus erythematosus. Clin Exp Rheumatol. 2024;42(3):601-7.
- 32. Vordenbaumen S, Kleefisch M, Sokolowski A. Beneficial effects associated to a healthy lifestyle in systemic lupus erythematosus: A cross-sectional study. Lupus. 2023;32(7):855-863.
- 33. Kao VP, Wen HJ, Pan YJ, Pai CS, Tsai ST, Su KY. Combined aerobic and resistance training improves physical and executive functions in women with systemic lupus erythematosus. Lupus. 2021;30(6):946-955.
- 34. Soriano-Maldonado A, Morillas-de-Laguno P, Sabio JM, Blanca GC, Antonio RC, Cristina MM et al. Effects of 12-week aerobic exercise on arterial stiffness, inflammation, and cardiorespiratory fitness in women with systemic lupus erythematosus: Nonrandomized controlled trial. J Clin Med. 2018;7(12):447.
- 35. Sola-Rodriguez S, Vargas-Hitos JA, Gavilan-Carrera B, Antonio RC, Raquel RF, José MS, et al. Physical fitness attenuates the impact of higher body mass and adiposity on inflammation in women with systemic lupus erythematosus. Front Immunol. 2021;12:729672.
- 36. Perandini LA, Sales-de-Oliveira D, Almeida DC, Azevedo H, Moreira-Filho CA, Cenedeze MA, et al. Effects of acute aerobic exercise on leukocyte inflammatory gene expression in systemic lupus erythematosus. Exerc Immunol Rev. 2016;22:64-81.
- 37. Perandini LA, Sales-de-Oliveira D, Mello S, Camara NO, Benatti FB, Lima FR, et al. Inflammatory cytokine kinetics to single bouts of acute moderate and intense aerobic exercise in women with active

- and inactive systemic lupus erythematosus. Exerc Immunol Rev. 2015;21:174-85.
- 38. Sieczkowska SM, Mazzolani BC, Smaira FI. Effects of a lifestyle intervention on cardiovascular risk factors in systemic lupus erythematosus patients: The study "Living well with lupus". Clin Rheumatol. 2024;43(3):1003-13.
- 39. Frade S, O'Neill S, Greene D, Nutter E, Cameron M. Exercise as adjunctive therapy for systemic lupus erythematosus. Cochrane Database Syst Rev. 2023;4(4):CD014816.
- 40. Parisis D, Bernier C, Chasset F, Arnaud L. Impact of tobacco smoking upon disease risk, activity and therapeutic response in systemic lupus erythematosus: A systematic review and meta-analysis. Autoimmun Rev. 2019;18(11):102393.
- 41. Xu D, You X, Wang Z, Qingyu Z, Jianhua X, Lindi J, et al. Chinese systemic lupus erythematosus treatment and research group registry VI: Effect of cigarette smoking on the clinical phenotype of Chinese patients with systemic lupus erythematosus. PLoS One. 2015;10(8):e0134451.
- 42. Kiyohara C, Washio M, Horiuchi T, Tada Y, Asami T, Ide S, et al. Cigarette smoking, N-acetyltransferase 2 polymorphisms and systemic lupus erythematosus in a Japanese population. Lupus. 2009;18(7):630-8.
- 43. Kiyohara C, Washio M, Horiuchi T, Yoshifumi T, Toyoko A, Saburo I, et al. Cigarette smoking, STAT4 and TNFRSF1B polymorphisms, and systemic lupus erythematosus in a Japanese population. J Rheumatol. 2009;36(10):2195-203.
- 44. Tsaprouni LG, Yang TP, Bell J, Katherine JD, Stavroula K, James N, et al. Cigarette smoking reduces DNA methylation levels at multiple genomic loci but the effect is partially reversible upon cessation. Epigenetics. 2014;9(10):1382-96.
- 45. Formica MK, Palmer JR, Rosenberg L, McAlindon TE. Smoking, alcohol consumption, and risk of systemic lupus erythematosus in the Black Women's Health Study. J Rheumatol. 2003;30(6):1222-6.
- Ghaussy NO, Sibbitt WL, Jr., Qualls CR. Cigarette smoking, alcohol consumption, and the risk of systemic lupus erythematosus: a case-control study. J Rheumatol. 2001;28(11):2449-53.
- 47. Takvorian SU, Merola JF, Costenbader KH. Cigarette smoking, alcohol consumption and risk of systemic lupus erythematosus. Lupus. 2014;23(6):537-44.
- 48. Cozier YC, Barbhaiya M, Castro-Webb N. Relationship of cigarette smoking and alcohol consumption to incidence of systemic lupus erythematosus in a prospective cohort study of black women. Arthritis Care Res (Hoboken). 2019;71(5):671-7.
- 49. Mandrekar P, Catalano D, White B, Szabo G. Moderate alcohol intake in humans attenuates monocyte inflammatory responses: inhibition of nuclear regulatory factor kappa B and induction of interleukin 10. Alcohol Clin Exp Res. 2006;30(1):135-9.

- Fenech M, Stockley C, Aitken C. Moderate wine consumption protects against hydrogen peroxideinduced DNA damage. Mutagenesis. 1997;12(4):289-96.
- 51. Imhof A, Froehlich M, Brenner H, Boeing H, Pepys MB, Koenig W. Effect of alcohol consumption on systemic markers of inflammation. Lancet. 2001;357(9258):763-7.
- 52. McAlindon T, Giannotta L, Taub N, D'Cruz D, Hughes G. Environmental factors predicting nephritis in systemic lupus erythematosus. Ann Rheum Dis. 1993;52(10):720-4.
- 53. Kim SK, Lee SS, Choe JY, Park SH, Lee H. Effect of alcohol consumption and smoking on disease damage in systemic lupus erythematosus: data from the Korean Lupus Network (KORNET) registry. Lupus. 2017;26(14):1540-9.
- 54. Alzate MA, Ochoa F, Ortiz-Salazar P, Hernandez-Parra D, Pineda R. 353 Coffee consumption and clinical outcomes in Colombian patients with systemic lupus erythematosus. Lupus Sci Med. 2017(4):10.
- 55. Orefice V, Ceccarelli F, Barbati C, Perricone C, Alessandri C, Conti F. The impact of caffeine intake on patients with systemic lupus erythematosus: Protect yourself, drink more coffee! Mediterr J Rheumatol. 2020;31(4):374-5.
- 56. Kiyohara C, Washio M, Horiuchi T, Toyoko A, Saburo I, Tatsuya A, et al. Modifying effect of N-acetyltransferase 2 genotype on the association between systemic lupus erythematosus and consumption of alcohol and caffeine-rich beverages. Arthritis Care Res (Hoboken). 2014;66(7):1048-56.

- 57. Wlaschek M, Heinen G, Poswig A, Schwarz A, Krieg T, Scharffetter-Kochanek K. UVA-induced autocrine stimulation of fibroblast-derived collagenase/MMP-1 by interrelated loops of interleukin-1 and interleukin-6. Photochem Photobiol. 1994;59(5):550-6.
- 58. McGrath H, Jr., Bak E, Michalski JP. Ultraviolet-A light prolongs survival and improves immune function in (New Zealand black x New Zealand white)F1 hybrid mice. Arthritis Rheum. 1987;30(5):557-61.
- Gruner S, Hofmann T, Meffert H, Sonnichsen N. Studies on the effects of a high dose UVA-1 radiation therapy on surface markers and function of epidermal Langerhans cells. Arch Dermatol Res. 1993;285(5):283-6.
- 60. Polderman MC, van Kooten C, Smit NP, Kamerling SW, Pavel S. Ultraviolet-A (UVA-1) radiation suppresses immunoglobulin production of activated B lymphocytes in vitro. Clin Exp Immunol. 2006;145(3):528-534.
- 61. Barbhaiya M, Costenbader KH. Ultraviolet radiation and systemic lupus erythematosus. Lupus. 2014;23(6):588-95.
- 62. Szczech J, Samotij D, Werth VP, Reich A. Trigger factors of cutaneous lupus erythematosus: a review of current literature. Lupus. 2017;26(8):791-807.

Cite this article as: Taju KG, Aloufi AS, Alsehlawi QA, Alahmadi RY, Alsubaie SS, Alamri NO, et al. The impact of lifestyle modifications on disease progression in patients with lupus. Int J Community Med Public Health 2025;12:519-25.